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Abstract 

We identify the three principle factors affecting the performance of learn­
ing by networks with localized units: unit noise, sample density, and the 
structure of the target function. We then analyze the effect of unit recep­
tive field parameters on these factors and use this analysis to propose a 
new learning algorithm which dynamically alters receptive field properties 
during learning. 

1 LEARNING WITH LOCALIZED RECEPTIVE FIELDS 

Locally-tuned representations are common in both biological and artificial neural 
networks. Several workers have analyzed the effect of receptive field size, shape, and 
overlap on representation accuracy: (Baldi, 1988), (Ballard, 1987), and (Hinton, 
1986). This paper investigates the additional interactions introduced by the task of 
function learning. Previous studies which have considered learning have for the most 
part restricted attention to the use of the input probability distribution to determine 
receptive field layout (Kohonen, 1984) and (Moody and Darken, 1989). We will see 
that the structure of the function being learned may also be advantageously taken 
into account. 

Function learning using radial basis functions (RBF's) is currently a popular tech­
nique (Broomhead and Lowe, 1988) and serves as an adequate framework for our 
discussion. Because we are interested in constraints on biological systems, we must 
explictly consider the effects of unit noise. The goal is to choose the layout of 
receptive fields so as to minimize average performance error. 

Let y = f(x) be the function the network is attempting to learn from example 
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(x, y) pairs. The network consists of N units whose locally-tuned receptive fields 
are distributed across the input space. The activity of the ith unit is the sum of a 
radial basis function <Pi(X) and a mean-zero noise process 7Ji(X). A typical form for 
<Pi is an n-dimensional Gaussian parametrized by its center Xi and width CTi, 

-IIX j-XII:l 

<fJi(X) = e :l"i 2 • (1) 

The function f(x) is approximated as a weighted sum of the output of N of these 
units: 

N 

F(x) = L Wi [<p,(x) + 7Ji(X)]. (2) 
i=l 

The weights Wi are trained using the LMS (least mean square) rule, which attempts 
to minimize the mean squared distance between f and F over the set of training 
patterns p for the current layout of receptive fields. In the next section we address 
the additional considerations that arise when the receptive field centers and sizes 
are allowed to vary in addition to the weights. 

2 TWO KINDS OF ERROR 

To understand the effect of receptive field properties on performance we must dis­
tinguish two basic sources of error. The first we call estimation error and is due to 
the intrinsic unit noise. The other we call approximation error and arises from the 
inability of the unit activity functions to represent the target function. 

2.1 ESTIMATION ERROR 

The estimation error can be characterized by the variance in F(x) I x. Because 
of the intrinsic unit noise, repeated stimulation of a network with the same input 
vector Xo will generate a distribution of outputs F(xo). If this variance is large, 
it can be a significant contribution to the MSE (fig. 1). Consideration of noisy 
units is most relevant to biological networks and analog hardware implementations 
of artificial units. Averaging is a powerful statistical technique for reducing the 
variance of a distribution. In the current context, averaging corresponds to receptive 
field overlap. In general, the more overlap the better the noise reduction in F(x) 
(though see section 2.2). The overlap of units at Xo can be increased by either 
increasing the density of receptive field centers there, or broadening the receptive 
fields of units in the neighborhood. 

From equation 2, F(x) may be rewritten 

N 

F(x) = L <Pi (X)Wi + e(x), 
,=1 

(3) 

where the summation term is the noise-free LMS approximation to f(x), and the 
second term 

N 

e(x) = L 7Ji(X)Wi, (4) 
i=l 
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JOint Density 

(a) low input density 
(b) high input density 
(c) low estimation error 
(d) high estimation error y 
(e) low approximation error 
(f) high approximation error 

a,c,e 

b,c,f 

x 

Figure 1: A. Estimation error arises from the variance of F(x) Ix. B. Approxima­
tion error is the deviation of the mean from the desired response (f(x)- < F(x) »2. 

is the estimation error. Since e(x) has mean zero for all x, its variance is 

N 

Var[e(x)] = E[e(x)] = E[L7]i(x)wi]. 
i=l 

If each unit has the same noise profile, this reduces to 

N 

Var[e] = Var[7]] L wi· 
i=l 

(5) 

(6) 

The dependence of estimation error e on the size of weights explains why increasing 
the density of receptive fields in the input space reduces noise in the output of the 
learning network. Though the number of units, and hence weights, that contribute 
to the output is increased in this manipulation, the estimation error is proportional 
to the sum of squared weights (6). The benefit achieved by making weights smaller 
outruns the cost of increasing their number. For example, each receptive field 
with weight Wi may be replaced by two copies of itself with weight wd2 and leave 
F(x) unchanged. The new sum of squared weights, L~l 2( T)2, and hence the 
estimation error, is reduced by a factor of two, however. 

A second strategy that may lead to a reduction in the size of weights involves 
broadening receptive fields (see section 2.2 for conditions). In general, broadening 
receptive fields increases the unweighted output ofthe network L~l <Pi(X), implying 
that the weights Wi must be correspondingly reduced in order that \I F(x) \I remain 
approximately constant. 
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These observations suggest that the effects of noise are best mitigated by allocat­
ing receptive field resources in regions of the input space where units are heavily 
weighted. It is interesting to note that under the assumption of additive noise, 
the functional form tP of the receptive fields themselves has no direct effect on the 
estimation error in F(x). The response profiles may, however, indirectly affect esti­
mation error via the weight vector, since LMS weights on receptive fields of different 
functional forms will generally be different. 

2.2 APPROXIMATION ERROR 

The second fundamental type of error, which we call approximation error, persists 
even for noise-free input units, and is due to error in the "fit" of the approximating 
function F to the target function f (fig. 1). Two aspects of approximation error 
are distinguished in the following sections. 

2.2.1 MISMATCH OF FUNCTIONAL FORM 

First, there may be mismatch between the specific functional form of the basis 
functions and that of the target function. For example, errors naturally arise when 
linear RBF's are used to approximate nonlinear target functions, since curves cannot 
be perfectly fit with straight lines. However, these errors may be made vanishingly 
small by increasing the density of receptive fields. For example, if linear receptive 
fields are trained to best fit a curved region of f(x) with second derivative c, then 

the mean squared error, J~~~2(~x2 - a)2 has a value O(c2d5). This type of error 
falls off as the 5th power of d, where d is the spacing of the receptive fields. In a 
similar result, (Baldi and lIeilegenberg, 1988) show that approximations to both 
linear and quadratic functions improve exponentially fast with increasing density of 
Gaussian receptive fields. 

2.2.2 MISMATCH OF SPATIAL SCALE 

A more general source of error in fitting target functions occurs when receptive 
fields are either too broad or too widely spaced relative to the fine spatial structure 
of f. Both of these factors can act to locally limit the high frequency content of the 
approximation F, which may give rise to severe approximation errors. 

The Nyquist (and Shannon) result on signal sampling says that the highest fre­
quency which may be recovered from a sampled signal is half the sampling fre­
quency. If the receptive field density is not high enough then this kind of result 
shows that high frequency fine structure in the function being approximated will 
be lost. 

When the unit receptive fields are excessively wide, they can also wash out the high 
frequency fine structure of the function. One can think of F as a "blurred" version 
of the the weight vector which in turn is a sampled version of f. The blurring 
is greater for wide receptive fields. The density and width should be chosen to 
match their frequency transfer characteristics and best approximate the function. 
For one-dimensional Gaussian receptive fields of width u, we choose the receptive 
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field spacing d to be 
1r 

d = 20'. (7) 

A density that satisfies this type of condition will be referred to in the next section 
as a "frequency-matched" density. 

3 A RECEPTIVE FIELD DESIGN STRATEGY 

In this section we describe an adaptive learning strategy based on the results above. 
Figure 2 shows the results of an experimental implementation of this procedure. 

It is possible to empirically measure the magnitude of the two sources of error 
analyzed above. Since we wish to minimize the expected performance error for the 
network as a whole, we weight our measurements of each type of error at each x 
by the input probability p(x). Errors in high density regions count more. Small 
magnitude errors may be important in high probability regions while even large 
errors may be neglected in low probability regions. The learning algorithm adjusts 
the layout of receptive fields to adjust to each form of error in turn. The steps 
involved follow. 

1. Uniformly distribute broad receptive fields at frequency-matched density 
throughout regions of the input space that contain data. (In our I-d exam­
ple, data, and hence receptive fields, are present across the entire domain.) 

2. Train the network weights to an LMS solution with fixed receptive fields. Using 
the trained network, accrue approximation errors across the input space. 

3. Where the approximation error exceeds a threshold T anywhere within a unit's 
receptive field, split the receptive field into two subfields that are as small as 
possible while still locally maintaining frequency-matched density. (This de­
pends on receptive field profile). Repeat steps 2 and 3 until the approximation 
error is under threshold across entire input space. We now have a layout where 
receptive field width and density are locally matched to the spatial frequency 
content of the target function, and approximation error is small and uniform 
across the input space. Note that since errors accrue according to p(x), we 
have preferentially allocated resources (through splitting) in regions with both 
high error and high input probability. 

4. Using the current network, measure and accrue estimation errors across the 
input space. 

5. Where the estimation error exceeds T anywhere within a unit's receptive field, 
replace the receptive field by two of the same size, adding a small random 
pertubation to each center. Repeat from 4 until estimation error is below 
threshold across entire input space. We now have a layout where receptive 
field density is highest where the effects of noise were most severe, such that 
estimation error is now small and uniform across the input space. Once again, 
we have preferentially allocated resources in regions with both high error and 
high input probability. 

Figure 2 illustrates this process for a noisy, one-dimensionsal learning problem. 
Each frame shows the estimation error, the approximation error, the target func-
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Figure 2: Results of an adaptive strategy for choosing receptive field size and density. 
See text for details. 
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tion and network output, and the unit response functions. In the top frame 24 units 
with broad, noisy receptive fields have been LMS-trained to fit the target function. 
Estimation error is visible across the entire domain, though it is concentrated in 
the small region just to the right of center where the input probability is peaked. 
Approximation error is concentrated in the central region which contains high spa­
tial frequencies, with minor secondary peaks in other regions, including the region 
of high input probability. 

In the second frame, the receptive field width was uniformly decreased and den­
sity was uniformly increased to the point where MSE fell below r; 384 units were 
required. In the third frame, the adaptive strategy presented above was used to 
allocate units and choose widths. Fewer than half as many units (173) were needed 
in this example to achieve the same MSE as in the second frame. In higher dimen­
sions, and with sparser data, this kind of recursive splitting and doubling strategy 
should be even more important. 

4 CONCLUSIONS 

In this paper we have shown how receptive field size, shape, density, and noise char­
acteristics interact with the frequency content of target functions and input prob­
ability density to contribute to both estimation and approximation errors during 
supervised function learning. Based on these interrelationships, a simple, adaptive, 
error-driven strategy for laying out receptive fields was demonstrated that makes 
efficient use of unit resources in the attempt to minimize mean squared performance 
error. 

An improved understanding of the role of receptive field structure in learning may 
in the future help in the interpretation of patterns of coarse-coding seen in many 
biological sensory and motor systems. 
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