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ABSTRACT 

A second-order architecture is presented here for translation, rotation and 
scale invariant processing of 2-D images mapped to n input units. This 
new architecture has a complexity of O( n) weights as opposed to the O( n3 ) 

weights usually required for a third-order, rotation invariant architecture. 
The reduction in complexity is due to the use of discrete frequency infor­
mation. Simulations show favorable comparisons to other neural network 
architectures. 

1 INTRODUCTION 

Multiplicative interactions in neural networks have been proposed (Pitts and Mc­
Culloch, 1947; Giles and Maxwell, 1987; McClelland et aI, 1988) both to explain bi­
ological neural functions and to provide invariances in pattern recognition. Higher­
order neural networks are useful for invariant pattern recognition problems, but 
their complexity prohibits their use in mal1Y large image processing applications. 
The complexity of the third-order rotation invariant neural network of Reid et aI, 
1990 is 0(n3 ), which will clearly not scale. For example, when 11 is on the order 
of 106 , as in high definition television (HDTV), 0(1018) weights would be required 
in a third-order neural network. Clearly, image processing applications are best 
approached with neural networks of lower complexity. \Ve present a translation, 
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rotation and scale invariant architecture, which has weight complexity of O( n), and 
requires only multiplicative and additive operations in the activation function. 

2 HIGHER-ORDER NEURAL NETWORKS 

Higher-order neural networks (HONN) have multiplicative terms in their activation 
function, such that the output of a unit, Ok, has the form 

(n-l)(n-l) (n-l) 

Ok = f[ E E ... E Wij .. .lkXiXj ... Xr] (1) 
(i=O) (j=0) 1=0 

where f is a thresholding function, Wij. .. lk is the weight for each term, and Xi is one 
of n input values. Some of the Xi could be bias units to give lower order terms. The 
order of the multiplications is O(nm) for an m-order network, but the order of the 
number of weights can be lower. Since the multiplications of data can be done in 
a preprocessing stage, the major factor in the computational burden is the number 
of weights. The emphasis on the complexity of the weights is especially relevant for 
optical implementations of higher-order networks (Psaltis et aI, 1988, Zhang et aI, 
1990), since the multiplications can usually be performed in parallel. 

Invariances can be achieved with higher-order neural networks by using the spa­
tial frequencies of the input as a priori information. Wechsler and Zimmerman, 
1988, compute the Fourier transform of the data in polar coordinates and use these 
data as inputs to a neural network to achieve rotation, scale and translation invari­
anee. The disadvantage with this approach is that the Fourier transform and the 
computation of polar coordinates require more complex operations than addition 
and multiplication of inputs. It has been shown that second-order networks can 
be constructed to provide either translation and scale invariance or rotation and 
scale invariance (Giles et aI, 1988). However, their approach does not consider the 
difficulties in defining scale and rotation for images made up of pixels. Our archi­
tecture directly addresses the problem of rotation, translation and scale invariance 
in pattern recognition for 2-D arrays ofbinal'Y pixels. Restrictions permit structure 
to be built into the weights, which reduces their complexity. 

3 WEDGE-RING HONN 

vVe present a new architecture for a second-order neural network based on the 
concept of the wedge-ring detector (Casasent, 1985). When a wedge-ring detector 
is used in the Fourier plane of an optical processor, a set of features are obtained 
that are invariant to scale, rotation and translation. As shown in figure 1, the lens 
performs a spatial Fourier transform on an image, which yields an intensity pattern 
that is invariant to translations in the image plane. The ring detectors sum the 
amplitudes of the spatial frequencies with the same radial distance from the zero 
frequency, to give features that are invariant to rotation and shift changes. The 
wedge detectors sum the amplitudes of frequencies within a range of angles with 
respect to the zero frequency to produce features that are invariant to scale and 
shift changes, assuming the images retain the same zero frequency power as they 
are scaled. 
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Laser Image Fourier Wedge-Ring Computer 
Transform Detector 

Lens 

Figure 1: A Wedge-Ring Detector Optical Processor 

In a multi-pixel, binary image, a second-order neural network can perform the same 
function as the wedge-ring detector without the need for a Fourier transform. For 
an image of dimensions fo x yin, let us define the pixel spatial frequency fi,j as 

(v'n-l-Ikl) (v'n- l -Ill) 

h,l = L L ;ri,j;ri+lkl,j+I'I' -(vn -1) ~ k, I < vn - 1 (2) 
(i=O) (j=O) 

where ;ri,j is a binary valued pixel at location (i, j). Note that the pixel frequencies 
have symmetry; /i,j = f -i,-j. The frequency terms can be arranged in a grid 
in a manner analogous to the Fourier transform image in the optical wedge-ring 
detector. (See figure 2.) 

Pixel Wedge Terms 
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Figure 2: A Simple Input Image and its Associated Pixel Spatial 
Frequencies, Pixel Ring Terms and Pixel Wedge Terms 

For all integers p, 0 ~ p ~ 2( fo - 1), the ring pixel terms rp are given by 

rp = 2 L h,l, 0 ~ k ~ vn - 1, 0 ~ I ~ yin - 1, if k = O. (3) 
Ikl+lll=p -(yin - 1) ~ I ~ yin - 1, if k > O. 

as shown in figure 2. This definition of the ring pixel terms works well for 
images with a small number of pixels. Larger pixel arrays can use the following 
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definition. For 0 ~ p ~ 2( Vii - I?, 

r p = 2 L h: ,f, 0 ~ k ~ Fn - 1, 0 < I < y'n - 1, if k = o. ( 4) 
I:l+ll=p -(y'n - 1) ~ 1 ~ y'n - 1, if k > o. 

Note that p will not take on all values less than 2n. The number of ring pixel terms 
generated by equation 4 is less than or equal to r n/21 + L y'n/2 J. The number of 
ring pixel terms can be reduced by making the rings a fixed width, ~r. Then, for 
all integers p, 0 ~ p < rV2(Vii - 1)/~rl 

rp = 2 L fl:,l, 
(p-l)~r<~~p~r 

o <k ~ Vii -1, 
o < I ~ y'n - 1, if k = o. 
-( Vii - 1) ~ I ~ Vii - 1, if k > o. 

(5) 

As the image size increases, the ring pixel terms will approximate continuous rings. 

For 0 < () ~ 1800 , the wedge pixel terms V9 are 

V9 = 2 fl:,l, -(Fn -1) < k < 0, -(y'n - 1) ~ I ~ 1, if k = 0, 
tan- l (I: 1 1)=9 -( Vii - 1) < I ~ y'n - 1, if k < 0, 

(6) 
as shown in figure 2. The number of wedge pixel terms is less than or equal to 
2n - 2y'n + 1. The number of wedge pixel terms can be reduced by using a fixed 
wedge width, ~v. Then for all integers q, 1 ~ q ~ P80° / ~v 1, 

-(Vii - 1) ~ k < 0, (7) 
(q-l )~tJ< tan- l (I: 11)~q~tJ -( Vii - 1) < I ~ 1, if k = 0, 

-(Vii - 1) ~ I ~ Vii - 1, if k < 0, 

For small pixel arrays, the pixel frequencies are not evenly distributed between the 
wedges. 

All of the operations from the second-order terms to the pixel frequencies and from 
the pixel frequencies to the ring and wedge pixel terms are linear. Therefore, the 
values of the wedge-ring features can be obtained by directly summing the second­
order terms, without explicitly determining the individual spatial frequencies. 

(y"il-l-II:I) (y"il-I-lll) 

L L 
(i=O) (j=O) 

(y"il-l-Ikl) (fo-l-lll) 

V9 = 2 L L 
(tan-l(1: 11)=9) (i=O) (j=O) 

o <k ~ y'n - 1, 
o ~ I ~ y'n - 1, if k = o. 
-(y'n - 1) < I ~ y'n - 1, 
if k > o. 

(8) 

-(y'n-l)<k~O, 
-(y'n - 1) ~ I ~ 1, 
if k = o. 
-( y'n - 1) ~ 1 < Vii - 1, 
if k < o. 

(9) 
A mask can be used to sum the second-order terms directly. For an example of the 
mask for the 3 x 3 image, see figure 3. 
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Figure 3: A Mask for Summing Second-Order Terms for Ring Features 
and "Vedge Features for the Image in Figure 2 

The ring and wedge pixel terms can be used as inputs for a multilayer neural 
network that can then perform pattern recognition with general combinations of 
these features. The output of the first (and possibly only) hidden layer units are 
for unit j, 

OJ = J[L wj,prp + L Wj,(1V(1], (10) 
p (1 

where f here is the threshold function. The total number of ring and wedge terms, 
which corresponds to the number of weights, is less than or equal to (5/2)n. 

4 EXAMPLE RESULTS FOR THE TC PROBLEM 

Results have been obtained for the 9 x 9 TC problem (McClelland et aI, 1988) (see 
figure 4). Since wedge and ring pixel terms are used, a solution to the problem 
is readily seen. Figure 5 shows the final neural network architecture. Equations 4 
and 6 are used to calculate the ring and wedge pixel terms, respectively. With two 
additional layers, the network can distinguish between the T and the C at any of 
the three scales or four rotations. In the hidden layer, the 1800 wedge pixel term is 
subtracted from the 900 wedge pixel term and vice-versa with a bias unit weighted 
by 0.5 and a hard-limiting threshold function. This computation results ill hidden 
units with values (0,1) or (1,0) for the C and (1,1) for the T. The next level then 
performs a binary AND, to get a 1 for T and a 0 for C. The weJge features are also 
used in a layer to determine whether the image was rotated by ±90° or not. The ring 
units are used as input to a layer with an output uuit for each of the three scales. 
Due to the reduced complexity of the weights in this second-order neural network, 
a solution for the architecture and weights is obtained by inspection, whereas t.he 
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Scale =2 Scale =3 

Figure 4: Examples of Rotated and Scaled Input Images for the 
TC Problem 

••• 

••• 

Figure 5: Multilayer Neural Network for the Wedge-Ring Features 
for the TC Problem 
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same problem required computer simulation when presented to a third-order neural 
network (Reid et aI, 1990). 

5 CONCLUSIONS 

In this paper, we show how the weight complexity in a higher-order neural network 
is reduced from O( n3 ) to O( n) by building into the architecture invariances in 
rotation, translation and scale. These invariances were built into the neural network 
architecture by analogy to the architecture for feature extraction in the optical 
wedge-ring detector system. This neural network architecture has been shown to 
greatly simplify the computations required to solve the classic TC problem. 
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