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Abstract 

Three-dimensional (3D) structures of protein backbones have been pre­
dicted using neural networks. A feed forward neural network was trained 
on a class of functionally, but not structurally, homologous proteins, us­
ing backpropagation learning. The network generated tertiary structure 
information in the form of binary distance constraints for the Co atoms 
in the protein backbone. The binary distance between two Co atoms was 
o if the distance between them was less than a certain threshold distance, 
and 1 otherwise. The distance constraints predicted by the trained neu­
ral network were utilized to generate a folded conformation of the protein 
backbone, using a steepest descent minimization approach. 

1 INTRODUCTION 

One current aim of molecular biology is determination of the (3D) tertiary struc­
tures of proteins in their folded native state from their sequences of amino acid 
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residues. Since Kendrew & Perutz solved the first protein structures, myoglobin 
and hemoglobin, and explained from the discovered structures how these proteins 
perform their function, it has been widely recognized that protein function is inti­
mately linked with protein structure[l]. 

Within the last two decades X-ray crystallographers have solved the 3-dimensional 
(3D) structures of a steadily increasing number of proteins in the crystalline state, 
and recently 2D-NMR spectroscopy has emerged as an alternative method for small 
proteins in solution. Today approximately three hundred 3D structures have been 
solved by these methods, although only about half of them can be considered as 
truly different, and only around a hundred of them are solved at high resolution 
(that is, less than 2A). The number of protein sequences known today is well over 
20,000, and this number seems to be growing at least one order of magnitude faster 
than the number of known 3D protein structures. 

Obviously, it is of great importance to develop tools that can predict structural 
aspects of proteins on the basis of knowledge acquired from known 3D structures. 

1.1 THE PROTEIN FOLDING PROBLEM 

It is generally accepted that most aspects of protein structure derive from the prop­
erties of the particular sequence of amino acids that make up the protein 1 • The 
classical experiment is that of Anfinsen et al. [2] who demonstrated that ribonucle­
ase could be denatured and refolded without loss of enzymatic activity. 

This has led to the formulation of the so-called protein folding problem: given the 
sequence of amino acids of a protein, what will be its native folded conformation? 

1.2 SECONDARY STRUCTURE PREDICTION 

Several methods have been developed for protein structure prediction. Most abun­
dant are the methods for protein secondary structure prediction [3, 4, 5, 6]. These 
methods predict for each amino acid in the protein sequence what type of secondary 
structure the amino acid is part of. Several strategies have been suggested, most 
of which are based on statistical analysis of the occurrence of single amino acids 
or very short stretches of amino acids in secondary structural elements in known 
proteins. In general, these prediction schemes have a prediction accuracy of 50-60% 
for a three-category prediction of helix-, sheet- and coil conformations. 

Recently neural networks have been applied to secondary structure prediction with 
encouraging results [7, 8, 9, 10]; on three-category prediction the accuracy is 65%; 
on two-catagory prediction of helix- and coil conformations the accuracy is 73%; 
and on a two-category prediction of turn- and coil conformations the accuracy is 
71 %. In all the three cases this is an improvement of the traditional methods. 

1 Although recent results indicate that certain proteins catalyze, but do not alter, the 
course of protein folding. 
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1.3 TERTIARY STRUCTURE PREDICTION 

The methods that exist for 3D structure prediction fall in three broad categories: (1) 
use of sequence homology with other protein with know 3D structure; (2) prediction 
of secondary structure units followed by the assembly of these units into a compact 
structure; and (3) use of empirical energy functions ab initio to derive the 3D 
structure. 

No general method for 3D structure prediction exists today, and novel methods 
are most often documented through case stories that illustrate best or single case 
performance. The most successful methods so far has been those based on sequence 
homology; if significant sequence and functional homology exists between a protein 
of interest and proteins for which the 3D structures are known, it is possible (but 
cumbersome) to build a reasonable 3D model of the protein structure. 

2 METHOD 

\fo,le here describe a new method for predicting the 3D structure of a protein backbone 
from its amino acid sequence [11]. The main idea behind this approach is to use a 
noise tolerant representation of the protein backbone that is invariant to rotation 
and translation of the backbone2 , and then train a neural network to map protein 
sequences to this representation. 

2.1 REPRESENTATION OF 3D BACKBONE STRUCTURES 

The folded backbone structure of a protein brings residues that are distantly posi­
tioned in sequence close to each other in space. One may identify such close contacts 
and use them as constraints on the backbone conformation. 

We define the binary distance D( i, j) between two residues i and j as 0 if the 
distance between the Ca atom in residue i and the Ca atom in residue j is less than 
a given threshold and as 1 if it is above or equal to the threshold, a typical choice 
of threshold being sA. Organizing these distances as a binary distance matrix gives 
rise to a two dimensional representation of the protein backbone (figure 2a depict 
such matrix). 

Most secondary motifs can be distinguished in this representation; helices appear 
as thickenings of the diagonal and anti-parallel and parallel sheets appear as stripes 
orthogonal and parallel to the diagonal. 

It is possible to reconstruct the 3D backbone from the binary distance matrix rep­
resentation by minimizing the "energy function" , 

E = L g(dij(1 ta(i) - taU) I - 0» 
itj 

where dij = 1 - 2D(i,j), g(x) = 1/(1 + exp(-x» and 0 is the distance threshold. 
The initial positions of the ta atoms are chosen at random. The motif for this 

2The (¢,,p) torsion-angle representation is also rotation- and translation invariant, but 
it is not noise tolerant. 
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Figure 1: The input to the network consists of 61 contiguous amino acids, where each 
amino acid is represented by a group of 20 neurons (only seven neurons/group are illus­
trated). At the output layer, a set of binary distances, between the centrally positioned 
residue and those lying to the left of it in the input window, is produced. Secondary 
structure assignment for the centrally positioned residue, in the three categories of helix, 
sheet and coil, is also produced. Regarding the binary distance matrix, the network is 
trained to report which of the 30 preceding Ca atoms are positioned within a distance of 
sA to the centrally placed amino acid. The input layer had 1220 (61 x 20) neurons, the 
hidden layer had 300 neurons and the output layer had '33 neurons. 

energy function is that constraints that do not hold should contribute with large 
values, while constraints that do hold should contribute with small values. 

For small proteins of the order of 60 residues the reconstruction is very accurate. 
For Bovine Pancreatic Trypsin Inhibitor (6PTI), a 56 residue long protein, we were 
able to generate a correctly folded backbone structure. The binary distance matrix 
was generated from the crystallographic data of 6PTI using a distance threshold 
of B.A. After convergence of the minimization procedure the errors between the 
reconstructed structure and the correct structure lay within 1.2A root mean square 
(rms). 

Preliminary results (unpublished) indicate that backbone structures for larger prcr 
teins can be reconstructed with a deviation from the correct structure down to 2A 
rms, when a distance threshold of 16A is used. \Vhen 5% random noise is added to 
the distance matrix the deviation from the correct structure grows to 4-5A rms. 

2.2 DISTANCE MATRIX PREDICTION 

A backpropagation network [12] was used to map protein sequences to distance 
matrices. To simplify the task the neural network had to learn, it was not taught 
to predict all constraints in the distance matrix. Only a band along the diagonal 
was to be predicted. More specifically, the network was taught to predict for each 
residue in the protein sequence the binary distances to the 30 previous residues. 
Furthermore it had to classify the central residue in question as either helix, sheet 
or coil, see figure 1. Hence, the trained neural network produced, when given a 
protein sequence, a secondary structure prediction and a distance matrix containing 
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Figure 2: Binary distance matrices for 1TRM. The matrices (:!23 x 223) show which 
Co. atoms are within an sA distance to each other Ca atom in the folded protein. a) The 
matrix corresponding to the structure determined from the X-ray data. b) Neural network 
prediction of an sA distance matrix. A 61-residue band centered along the diagonal is 
generated. The network predicts this band with an accuracy of 96.6%. 

binary distance constraints for a lower diagonal-band matrix of width 30. Due to 
symmetry in the distance matrix and the diagonal being always zero, the resulting 
binary distance matrix contained a diagonal-band of predicted distance constraints 
of width 61. 

3 CASE STORY 

A neural network with this architecture was trained on 13 different proteases [13] 
from the Brookhaven Protein Data Bank, all having their data collected to a nom­
inal resolution better than 2A. The 13 proteases were of several structural classes 
including trypsins and subtilisins. This training set generated 3171 different exam­
ples (input windows) which were presented to the network. After 200 presentations 
of each example, the network had learned the training set to perfection3 . A 14th 
protease, 1TRM (Rat Trypsin), with a length of 223 residues, was used to test the 
network. This protease was 74% homologous to one of the 13 proteases that the 
network was trained on. The distance matrix derived from X-ray diffraction for 
this protein is shown in figure 2a. The ability of the network to correctly assign 
structural information is amply illustrated in figure 2b, where the network is pre­
dicting the distance constraints around the diagonal for 1TRM. Although a high 
degree of sequence homology exists between 1 TRM and the trypsins included in the 
training set, not a single input window presented to the network was identical to 
any window in the training set. The prediction thus illustrates the ability of the 
network to generalize from the training set. In the prediction (figure 2b), a clear 
distinction can be made between helices and anti-parallel sheets as well as other 
tertiary motifs. 

If the whole binary distances matrix had been predicted, it would have been possible 

3The training lasted 2 weeks on an Apollo 10000 running at 10 Mflops. 
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(a) (b) 

Figure 3: Backbone conformation for the 223 residue long trypsin 1 TRM. a) The crystal 
structure for 1TRM, as determined by X-ray data. b) The predicted structure of 1TRM 
superimposed on the crystal structure. The nns deviation calculated over all the CQ atoms 
was 3A. The largest deviations were present in surface loops, some of which are fixed by 
several disulphide bridges. 

to construct the backbone conformation directly from the prediction. However, since 
only a truncated version was predicted, a good guess of the backbone conformation 
is needed for the minimization4 . By using as initial guess the backbone conformation 
for a homologous protein, the backbone conformation of 1 TRM was predicted with a 
3A rms deviation from the coordinates determined by X-ray diffraction, see figure 3. 
In this particular case, the length of the sequence used for the starting configuration 
was identical to that of the protein to be reconstructed. vVhen the sequences are of 
unequal length, on the other hand, it is clear that additional considerations would 
have to be taken into account during the minimization process. 

4 DISCUSSION 

The single main achievement of this study has been the generation of a 3D structure 
of a protein from its amino acid sequence. The approach involved first the prediction 
of a distance matrix using a neural network and subsequently a minimization fitting 
procedure. 

Binary distance matrices were introduced as a noise tolerant translation- and ro­
tation invariant representation of 3D protein backbones, and a neural network was 
trained to map protein sequences to this representation. 

The results reported here are predictions of folded conformations, illustrated with 
the trypsin ITRM. Our neural network is clearly capable of generalizing the folding 

4For large proteins, where the band of distance constraints does not cover all spatial 
contacts, local folding domains may acquire different chiralities, leading to improper pack­
ing of the domains in the protein. However, new experiments indicate that the backbone 
structure of proteins that are 200-300 residues long can be reconstructed with good results 
from a random configuration, if the width of the band in the distance matrix is 121 and 
the distance threshold is 16A. 



A Novel Approach to Prediction of the 3-Dimensional Structures 529 

information stemming from known proteins with homologous function. Current 
investigations have shown that the network is robust towards mutation of amino 
acids in the protein sequence, whereas it is very sensitive to insertions and deletions 
in the sequence. Thus, new network architectures will have to be developed, if this 
method is to be useful for proteins with low homology; a bigger training set alone 
will not do it. 

Distance constraints can also be derived from experimental procedures such as 
NMR, in which they take the form of nuclear Overhauser enhancement (nOe) fac­
tors. Structural information can be successfully derived from such data using re­
straint dynamics which in its essential form bears some resemblance to the approach 
employed here, the most salient difference being that the potential energy function 
in our work is much simpler. 
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