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Abstract 

We consider feed-forward neural networks with one non-linear hidden layer 
and linear output units. The transfer function in the hidden layer are ei­
ther bell-shaped or sigmoid. In the bell-shaped case, we show how Bern­
stein polynomials on one hand and the theory of the heat equation on the 
other are relevant for understanding the properties of the corresponding 
networks. In particular, these techniques yield simple proofs of universal 
approximation properties, i.e. of the fact that any reasonable function can 
be approximated to any degree of precision by a linear combination of bell­
shaped functions. In addition, in this framework the problem of learning 
is equivalent to the problem of reversing the time course of a diffusion pro­
cess. The results obtained in the bell-shaped case can then be applied to 
the case of sigmoid transfer functions in the hidden layer, yielding similar 
universality results. A conjecture related to the problem of generalization 
is briefly examined. 

1 INTRODUCTION 

Bell-shaped response curves are commonly found in biological neurons whenever a 
natural metric exist on the corresponding relevant stimulus variable (orientation, 
position in space, frequency, time delay, ... ). As a result, they are often used in 
neural models in different context ranging from resolution enhancement and inter­
polation to learning (see, for instance, Baldi et al. (1988), Moody et al. (1989) 
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and Poggio et al. (1990)). Consider then the problem of approximating a function 
y = I(x) by a weighted sum of bell-shaped functions B(k, x), i. e. of finding a 
suitably good set of weights H(k) satisfying 

I(x) ~ L H(k)B(k, x). (1) 
k 

In neural network terminology, this corresponds to using a feed-forward network 
with a unique hidden layer of bell-shaped units and a linear ouput layer. In this note, 
we first briefly point out how this question is related to two different mathematical 
concepts: Bernstein Polynomials on one hand and the Heat Equation on the other. 
The former shows how such an approximation is always possible for any reasonable 
function whereas through the latter the problem of learning, that is of finding H(k), 
is equivalent to reversing the time course of a diffusion process. For simplicity, the 
relevant ideas are presented in one dimension. However, the extension to the general 
setting is straightforward and will be sketched in each case. We then indicate how 
these ideas can be applied to similar neural networks with sigmoid transfer functions 
in the hidden layer. A conjecture related to the problem of generalization is briefly 
examined. 

2 BERNSTEIN POLYNOMIALS 

In this section, without any loss of generality, we assume that all the functions to 
be considered are defined over the interval [0,1]. For a fixed integer n, there are n 
Bernstein polynomials of degree n (see, for instance, Feller (1971)) given by 

Bn(k, x) = (~) xk(l - xt-k. (2) 

Bn(k, x) can be interpreted as being the probability of having k successes in a coin 
flipping experiment of duration n, where x represents the probability of a single 
success. It is easy to see that Bn(k, x) is bell-shaped and reaches its maximum 
for x = kin. Can we then approximate a function I using linear combinations 
of Bernstein polynomials of degree n? Let us first consider, as an example, the 
simple case of the identity function I(x) = x (x E [0,1]). If we interpret x as the 
probability of success on a single coin toss, then the expected number of successes 
in n trials is given by 

(3) 

or equivalently 

(4) 

The remarkable theorem of Bernstein is that (4) remains approximately true for a 
general function I. More precisely: 

Theorem: Assume I is a bounded function defined over the interval [0,1]. Then 

.'i.':!, i:t(;) G) x>(1 - xr> = J(x) (5) 
k=O 



Computing with Arrays of Bell-Shaped and Sigmoid functions 737 

at any point x where 1 is continuous. Moreover, if 1 is continuous everywhere, the 
sequence in (5) approaches 1 uniformly. 

Proof: The proof is beautiful and elementary. It is easy to see that 

for any 0 < 6 < 1. To bound the first term in the right hand side of this inequality, 
we use the fact that for fixed f and for n large enough, at a point of continuity x, 
we can find a 6 such that I/(x) - I(~)I < f as soon as Ix - ~I < 6. Thus the first 
term is bounded by f. If 1 is continuous everywhere, then it is uniformly continuous 
and 6 can be found independently of x. For the second term, since 1 is bounded 
(1/(x)1 5 M), we have I/(x) - I(~)I 5 2l'vf. Now we use Tchebycheff inequality 
(P(IX - E{X)I ~ a) ::; (VarX)/a2 ) to bound the tail of the binomial series 

I ~ (n) k(1_ )n-kl nx{1- x) _1_ 
~ k x x 5 62n2 ::; 4n62 . 

Ix- !-1~6 

Collecting terms, we finally get 

which completes the proof. 

Bernsteins's theorem provides a probabilistic constructive proof of Weierstrass the­
orem which asserts that every continuous function over a compact set can be uni­
formly approximated by a sequence of polynomials. Its "connectionist" interpre­
tation is that every reasonable function can be computed by a two layer network 
consisting of one array of equally spaced bell-shaped detectors feeding into one lin­
ear output unit. In addition, the weighting function H{k) is the function 1 itself 
(see also Baldi et al. (1988)). Notice that the shape of the functions Bn ( k, x) in the 
array depends on k: in the center (k :::::::: n/2) they are very symmetric and similar to 
gaussians, as one moves towards the periphery the shape becomes less symmetric. 
Two additional significant properties of Bernstein polynomials are that, for fixed 
n, they form a partition of unity: Ek Bn(k, x) = (x + (1 - x))n = 1 and that they 

have constant energy f01 Bn(k, x) = 1/(n + 1). One important advantage of the 
approximation defined by (5) is its great smoothness. If 1 is differentiable, then not 
only (5) holds but also 

. d (~ (k) (n) k ( )n k) dl hm -d ~ 1 - k x 1 - x - -+-d 
n-oo x n x 

k=O 

(6) 
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uniformly on [0,1] and the same is true for higher order derivatives (see, for instance, 
Davis (1963». Thus the Bernstein polynomials provide simultaneous approxima­
tion of a function and of its derivatives. In particular, they preserve the convexity 
properties of the function f being approximated and mimic extremely well its qual­
itative behavior. The price to be paid is in precision, for the convergence in (5) 
can sometimes be slow. Good qualitative properties of the approximation may 
be relevant for biological systems, whereas precision there may not be a problem, 
especially in light of the fact that n is often large. 

Finally, this approach can be extended to the general case of an input space with d 
dimensions by defining the generalized Bernstein polynomials 

If f(Xl, ... ,Xd) is a continuous function over the hypercube [0, l]d, then 

(8) 

approaches uniformly f on [0, l]d as min ni -+ 00. 

3 LEARNING AND THE HEAT EQUATION 

Consider again the general problem of approximating a function f by a linear com­
bination of bell-shaped functions, but where now the bell-shaped functions are gaus­
sians B( w, x), of the form 

B( ) 1 e-(x-w)2/2q 2 
W,X = ~ 

V 27rU 
(9) 

The fixed centers w of the gaussians are distributed in space according to a density 
p( w) (this enables one to treat the continuous and discrete case together and also 
to include the case where the centers are not evenly distributed). This idea was 
directly suggested by a presentation of R. Durbin (1990), where the limiting case of 
an infinite number oflogistic hidden units in a connectionist network was considered. 
In this setting, we are trying to express f as 

or 

1+00 1 2 2 

f(x)::::::: h(w) e-(x-w) /217 p(w)dw 
-00 ..J2;u 

f(x) ::::::: 1+00 1 H(w)e-(x-w)2/ 2q 2 dw 
-00 V27ru 

(10) 

(11) 

where H = hp. Now, diffusion processes or propagation of heat are usually modeled 
by a partial differential equation of the type 

(12) 
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(the heat equation) where u(x, t) represents the temperature (or the concentration) 
at position x at time t. Given a set of initial conditions of the form u( x, 0) = g( x), 
then the distribution of temperatures at time t is given by 

u(x, t) = g(w) __ e-(x-w) / 4tdw. 1+00 1 2 

-00 v47rt 
(13) 

Technically, (13) can be shown to give the correct distribution of temperatures at 
time t provided 9 is continuous, Ig(x)1 = O(exp(hx2» and 0 ~ t < 1/4h. Under 
these conditions, it can be seen that u(x, t) = O(exp(kx2» for some constant k > 0 
(depending on h) and is the unique solution satisfying this property (see Friedman 
(1964) and John (1975) for more details). 

The connection to our problem now becomes obvious. If the initial set of temper­
atures is equal to the weights in the network (H(w) = g(w», then the function 
computed by the network is equal to the temperature at x at time t = 0'2/2. Given 
a function f(x) we can view it as a description of temperature values at time 0'2/2; 
the problem of learning, i. e. of determining the optimal h( w) (or H( w») consists in 
finding a distribution of initial temperatures at time t = 0 from which f could have 
evolved. In this sense, learning is equivalent to reversing time in a diffusion process. 
If the continuous case is viewed as a limiting case where units with bell-shaped 
tuning curves are very densely packed, then it is reasonable to consider that, as 
the density is increased, the width 0' of the curves tends to O. As 0' ~ 0, the final 
distribution of temperatures approaches the initial one and this is another heuristic 
way of seeing why the weighting function H (w) is identical to the function being 
learnt. 

In the course of a diffusion or heat propagation process, the integral of the concen­
tration (or of the temperature) remains constant in time. Thus the temperature 
distribution is similar to a probability distribution and we can define its entropy 

E(u(x, t» = -1:00 
u(x, t) In u(x, t)dx. (14) 

It is easy to see that the heat equation tends to increase E. Therefore learning can 
also be viewed as a process by which E is minimized (within certain time boundaries 
constraints). This is intuitively clear if we think oflearning as an attempt to evolve 
an initially random distribution of connection weights and concentrate it in one or 
a few restricted regions of space. 

In general, the problem of solving the heat equation backwards in time is difficult: 
physically it is an irreversible process and mathematically the problem is ill-posed 
in the sense of Hadamard. The solution does not always exist (for instance, the 
final set of temperatures must be an analytic function), or exists only over a limited 
period of time and, most of all, small changes in the final set of temperatures can 
lead to large changes in the initial set of temperatures) (see, for instance, John 
(1955». However, the problem becomes well-posed if the final set of temperatures 
has a compact Fourier spectrum (see Miranker (1961); alternatively, one could use 
a regularization approach as in Franklin (1974». In a connectionist framework, one 
usually seeks a least square approximation to a given function. The corresponding 
error functional is convex (the heat equation is linear) and therefore a solution 
always exists. In addition, the problem is usually not ill-posed because the functions 
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to be learnt have a bounded spectrum and are often known only through a finite 
sample. Thus learning from examples in networks consisting of one hidden layer 
of gaussians units and a linear output unit is relatively straightforward, for the 
landscape of the usual error function has no local minima and the optimal set of 
weights can be found by gradient descent or directly, essentially by linear regression. 
To be more precise, we can write the error function in the most general case in the 
form: 

E(h(w» = j[/(x) - j h(u)e-(X-tJ)2/202 Jl(u)du]2v(x)dx (15) 

where Jl and v are the measures defined on the weights and the examples respec­
tively. The gradient, as in the usual back-propagation of errors, is given by: 

BE = -2j[/(X) _ jH(u)e-(X-tJ)2/202 du]e-(x-w)2/202 Jl(w)v(x)dx (16) 
Bh(w) . 

Thus the critical weights of (15) where I-'(w) ~ 0 are characterized by the relation 

j I(x )e-(x-w)2/202 v(x)dx = j j H( u)e-(x-w)2/202 e-(x-u)2/202 v(x)dudx. (17) 

If now we assume that the centers of the gaussians in the hidden layer occupy a 
(finite or infinite) set of isolated points Wi, (17) can be rewritten in matrix form as 

B = AH(u) (18) 

where Bi = f I(x)exp(-(x - Wi)2/2u2)v(x)dx, H(u)j = h(Ui)Jl(Ui) and A is the 
real symmetric matrix with entries 

Ai; = j e-(x-wi )2/202 e-(x-tJj)2/202 v(x)dx. (19) 

Usually A is invertible, so that H(u) = A-I B which, in turn, yields h(Ui) = 
H(Ui)/ Jl( Ui). 

Finally, everything can be extended without any difficulty to d dimensions, where 
the typical solution of '\]2u = Bu/at is given by 

1+00 1+00 1 - E .(x.-w.)2/4t U(Xl, ... ,Xd,t) = ... g(w)( )d/2e. dWl ... dwd -00 -00 47rt 
(20) 

with, under some smoothness assumptions, u(x, t) ~ g(x) as t ~ O. 

Remark 

For an application to a discrete setting consider, as in Baldi et al. (1988), the sum 

For an initial gaussian distribution of temperatures u(x,O) of the form 
(1/Vf;) exp( _x2 /2rp), the distribution u(x, t) of temperatures at time t is also 
gaussian, centered at the origin, but with a larger standard deviation which, using 
(13), is given by (172 +2t)I/2. Thus, if we imagine that at time 0 a temperature equal 
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to k has been injected (with a very small "I) at each integer location along the real 
axis, then lex) represents the distribution of temperatures at time t = (0'2 - "12 )/2. 
Intuitively, it is clear that as 0' is increased (i.e. as we wait longer) the distribution 
of temperatures becomes more and more linear. 

(2) It is aesthetically pleasing that the theory of the heat equation can also be 
used to give a proof of Weierstrass theorem. For this purpose, it is sufficient to 
observe that, for a given continuous function 9 defined over a closed interval [a, b], 
the function u(x, t) given by (13) is an analytic function in x at a fixed time t. 
By letting t --+ 0 and truncating the corresponding series, one can get polynomial 
approximations converging uniformly to g. 

4 THE SIGMOID CASE 

We now consider the case of a neural network with one hidden layer of sigmoids and 
one linear output unit. The output of the network can be written as a transform 

out(x) = J O'(w.x)h(w)J.l(w)dw (21) 

where x is the input vector and w is a weight vector which is characteristic of each 
hidden unit (i. e. each hidden units is characterized by the vector of weights on its 
incoming input lines rather than, for instance, its spatial location). Assume that 
the inputs and the weights are normalized, i.e. IIxll = Ilwll = 1 and that the weight 
vectors cover the n-dimensional sphere uniformly (or, in the limit, that there is a 
vector for each point on the sphere). Then for a given input x, the scalar products 
w.x are maximal and close to 1 in the region of the sphere corresponding to hidden 
units where wand x are colinear and decay as we move away till they reach negative 
values close to -1 in the antipodal region. When these scalar products are passed 
through an appropriate sigmoid, a bell-shaped pattern of activity is created on the 
surface of the sphere and from then on we are reduced to the previous case. Thus the 
previous results can be extended and in particular we have a heuristic simple proof 
that the corresponding networks have universal approximation properties (see, for 
instance, Hornik et al. (1989». Notice that intuitively the reason is simple for we 
end up we something like a grand-mother cell per pattern or cluster of patterns. 

If we assume that initially J.l( w) -# 0 everywhere, then it is clear that for learning 
via LMS optimization we can take J.l to be fixed and adjust only the output weights 
h. But the problem then is convex and without local minima. This suggests that in 
the limit of an extremely large number of hidden units, the landscape of the error 
function is devoid of local minima and learning becomes very smooth. This result 
is consistent with the conjecture that under reasonable assumptions, as we progres­
sively increase the number of hidden units, learning goes from being impossible, to 
being possible but difficult and lengthy, to being relatively easy and quick to trivial. 
And if so what is the nature of these transitions? This picture is also consistent 
with certain simulation results reported by several authors, whereby optimal per­
formance and generalization is not best obtained by training for a very long time a 
minimal size highly constrained network, but rather by training for a shorter time 
(until the validation error begins to go up (see Baldi and Chauvin (1991») a larger 
network with extra hidden units. 
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