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Abstract 
A feedforward layered network implements a mapping required to control an 
unknown stochastic nonlinear dynamical system. Training is based on a 
novel approach that combines stochastic approximation ideas with back­
propagation. The method is applied to control admission into a queueing sys­
tem operating in a time-varying environment. 

1 INTRODUCTION 

A controller for a discrete-time dynamical system must provide, at time tn, a value un for 
the control variable. Information about the state of the system when such decision is 
made is available through the observable Yn' The value un is determined on the basis of 
the current observation Yn and the preceding control action Un-I' Given the information 
In = (Yn' Un-I), the controllerimplements a mapping In -+ Un. 

Open-loop controllers suffice in static situations which require a single-valued control 
policy U : a constant mapping In -+ u·, regardless of In. Closed-loop controllers pro­
vide a dynamic control action un, determined by the available information In. This work 
addresses the question of training a neural network to implement a general mapping 
In -+ Un' 

The problem that arises is the lack of training patterns: the appropriate value un for a 
given input In is not known. The quality of a given control policy can only be assessed by 
using it to control the system, and monitoring system perfonnance. The sensitivity of the 
performance to variations in the control policy cannot be investigated analytically, since 
the system is unknown. We show that such sensitivity can be estimated within the stan­
dard framework of stochastic approximation. The usual back-propagation algorithm is 
used to determine the sensitivity of the output un to variations in the parameters W of the 
network, which can thus be adjusted so as to improve system performance. 

The advantage of a neural network as a closed-loop controller resides in its ability to 
accept inputs (In, In-I, ... , In-p )' The additional p time steps into the past provide infor­
mation about the history of the controlled system. As demonstrated here, neural network 
controllers can capture regularities in the structure of time-varying environments, and are 
particularly powerful for tracking time variations driven by stationary stochastic 
processes. 
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2 CONTROL OF STOCHASTIC DYNAMICAL SYSTEMS 

Consider a dynamical system for which the state x,. is updated at discrete times 
tIl = n B. The control input u,. in effect at time tIl affects the dynamical evolution, and 

XII +1 = l(xII • ull • ~,.). (2.1) 

Here (f;,,J is a stochastic process which models the intrinsic randomness of the system as 
well as external, unmeasurable disturbances. The variable XII is not accessible to direct 
measurement, and knowledge about the state of the system is limited to the observable 

YII = h(xII )· (2.2) 

Our goal is to design a neural network controller which produces a specific value UII for 
the control variable to be applied at time til' given the available information 

III == (YII' UII-I)· 

In order to design a controller which implements the appropriate control policy III -+ UII , 
a specification of the purpose of controlling the dynamical system is needed. There is 
typically a function of the observable. 

'II = H(YII)' (2.3) 

which measures system perfonnance. It follows from Eqs. (2.1)-(2.3) that the 
composition G = H 0 hoi determines 

(2.4) 

a function of the state X of the system, the control variable u. and the stochastic variable 
~. The quantity of interest is the expectation value of the system performance, 

<.III> = <H(y,.»~. (2.5) 

averaged with respect to ~. This expectation value can be estimated by the long-run 
average 

(2.6) 

since for an ergodic system 'N -+ <.III> as N -+ 00. The goal of the controller is to 
generate a sequence {UII} , 1 ~ n ~ N of control values, such that the average 
performance <.III> stabilizes to a desired value , •. 

The parameters W of the neural network are thus to be adapted so as to minimize a cost 
function 
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1 • 2 
E(W) = 2" (<.I,,> -J ) . (2.7) 

The dependence of E(W) on W is implicit: the value of <.I,,> depends on the controlling 
sequence {U,,} , which depends on the parameters W of the neural network. 

On-line training proceeds through a gradient descent update 

W,,+1 = WIt -" VwE,,(W), 
towards the minimization of the instantaneous deviation 

1 • 2 
E,,(W) = "2 (J,,+1 - J ) . 

(2.8) 

(2.9) 

There is no specified target for the output U" that the controller is expected to provide in 
response to the input I" = (y", U,,-I). The output u" can thus be considered as a variable 
u, which controls the subsequent performance: J,,+1 = G(x", u, ~,,), as follows from 
Eq. (2.4). Then 

(2.10) 

The factor V w U measures the sensitivity of the output of the neural network controller to 
changes in the internal parameters W: at fixed input I", the output u" is a function only 
of the network parameters W. The gradient of this scalar function is easily computed 
using the standard back-propagation algorithm (Rumelhart et al, 1986). 

The factor dG IdU measures the sensitivity of the system performance J,,+1 to changes in 
the control variable. The information about the system needed to evaluate this derivative 
is not available: unknown are the functions fwhich describes how X,,+1 is affected by u" 
at fixed x"' and the function h which describes how this dependence propagates to the 
observable Y,,+I. The algorithm is rendered operational through the use of stochastic 
approximation (Kushner, 1971): assuming that the average system performance <.I,,> is a 
monotonically increasing function of u, the sign of the partial derivative d<.l,,>ldU is 
positive. Stochastic approximation amounts to neglecting the unknown fluctuations of 
this derivative with u, and approximating it by a constant positive value, which is then 
absorbed in a redefinition of the step size" > O. 

The on-line update rule then becomes: 

(2.11) 

As with stochastic approximation, the on-line gradient update uses the instantaneous 
gradient based on the current measurement J,,+I, rather than the gradient of the expected 
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value <.I,,>, whose deviations with respect to the target J* are to be minimized. The 
combined use of back-propagation and stochastic approximation to evaluate VwE,,(W), 
leading to the update rule of Eq. (2.11), provides a general and powerful learning rule for 
neural network controllers. The only requirement is that the average performance <.I" > 
be indeed a monotonic function of the control variable u. 

In the following section we illustrate the application of the algorithm to an admission 
controller for a traffic queueing problem. The advantage of the neural network over a 
standard stochastic approximation approach becomes apparent when the mapping which 
produces u" is used to track a time-varying environment generated by a stationary 
stochastic process. A straightforward extension of the approach discussed above is used 
to train a network to implement a mapping (I", 1,,-1, ... , I,,-p) -+ u", The additional p 
time steps into the past provide information on the history of the controlled system, and 
allow the network to capture regularities in the time variations of the environment. 

3 A TWO-TRAFFIC QUEUEING PROBLEM 
Consider an admission controller for a queueing system. As depicted in Fig. 1, the system 
includes a server, a queue, a call admission mechanism, and a controller. 

"'!,ocal arri_v_a_ls _____ --. 

a SERVER 

QUEUE 
admissions 

------------~~ 

" ~----------re~j~ abandonments 

controller 

Figure 1: Admission controller for a two-traffic queuing problem. 
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The need to serve two independent traffic streams with a single server arises often in 
telecommunication networks. In a typical situation. in addition to remote arrivals which 
can be monitored at the control node, there are local arrivals whose admission to the 
queue can be neither monitored nor regulated. Within this limited information scenario. 
the controller must execute a policy that meets specified performance objectives. Such is 
the situation we now model. 

Two streams are offered to the queueing system: remote traffic and local traffic. Both 
streams are Poisson, Le., the interarrival times are independently and exponentially 
distributed, with mean l/A. Calls originated by the remote stream can be controlled, by 
denying admission to the queue. Local calls are neither controlled nor monitored. While 
the arrival rate AR of remote calls is fixed. the rate AL(t) of local calls is time-varying. It 
depends on th~ state of a stationary Markov chain to be described later (Kleinrock. 1975). 

The service time required by a call of any type is an exponentially distributed random 
variable. with mean I Ill. 

Calls that find an empty queue on arrival get immediately into service. Otherwise. they 
wait in queue. The service discipline is first in first out, non-idling. Every arrival is 
assigned a "patience threshold" 'to independently drawn from a fixed but unknown 
distribution that characterizes customer behavior. If the waiting time in queue exceeds its 
"patience threshold". the call abandons. 

Ideally, every incoming call should be admitted. The server. however. cannot process. on 
the average. more than Il calls per unit time. Whenever the offered load 
P = [AR + AL(t)]/1l approaches or exceeds I, the queue starts to build up. Long 
queues result in long delays. which in turn induce heavy abandonments. To keep the 
abandonments within tolerable limits. it becomes necessary to reject some remote 
arrivals. 

The call admission mechanism is implemented via a token-bank (not shown in the figure) 
rate control throttle (Berger. 1991). Tokens arrive at the token-bank at a deterministic 
rate AT. The token-bank is finite. and tokens that find a full bank are lost A token is 
needed by a remote call to be admitted to the queue. and tokens are not reusable. Calls 
that find an empty token bank are rejected. Remote admissions are thus controlled 
through U=ATIAR' 

Local calls are always admitted. The local arrival rate AL(t) is controlled by an 
underlying q-state Markov chain. a birth-death process (Kleinrock, 1975) with transition 
rate y only between neighboring states. When the Markov chain is in state i. I ~ i ~ q. 
the local arrival rate is AL(i). 

Complete specification of the state xn of the system at time tn would require information 
about number of arrivals. abandonments. and services for both remote and local traffic 
during the preceding time interval of duration B = 1. as well as rejections for the 
controllable remote traffic, and waiting time for every queued call. But the local traffic is 
not monitored. and information on arrivals and waiting times is not accessible. Thus Y n 
only contains information about the remote traffic: the number nr of rejected calls. the 
number no of abandonments. and the number ns of serviced calls since tn-I' The 
information In available at time tn also inCludes the preceding control action Un-I' The 
controller uses (/n' In-I, ... , In-p ) to determine un. 
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The goal of the control policy is to admit as many calls as possible. compatible with a 
tolerable rate of abandonment na I AR s;.1. The ratio na I AR thus plays the role of the 
performance measure J". and its target value is J* =.1. Values in excess of.1 imply an 
excessive number of abandonments and require stricter admission control. Values smaller 
than .1 are penalized if obtained at the expense of avoidable rejections. 

4 RESULTS 
All simulations reported here correspond to a server capable of handling calls at a rate of 
J.L = 200 per unit time. The remote traffic arrival rate is AR = 100. The local traffic 
arrival rate is controlled by a q = 10 Markov chain with AL(i) = 20i for 1 s; i s; 10. 
The offered load thus spans the range 0.6 s; p s; 1.5. in steps of 0.1. Transition rates 
y = 0.1. 1. and lOin the Markov chain have been used to simulate slow. moderate. and 
rapid variations in the offered load. 

The neural network controller receives inputs (I,.. 1,.-1' ... , 1,.-4) at time t,. through 20 
input units. A hidden layer with 6 units transmits information to the single output unit. 
which provides u,.. The bound for tolerable abandonment rate is set at.1 = 0.1. 

To check whether the neural network controller is capable of correct generalization. a 
network trained under a time-varying scenario was subject to a static one for testing. 
Training takes place under an offered load p varying at a rate of y = 1. The network is 
tested at y = 0: the underlying Markov chain is frozen and p is kept fixed for a long 
enough period to stabilize the control variable around a fixed value u *. and obtain 
statistically meaningful values for nat n,. and ns' A careful numerical investigation of 
these quantities as a function of p reveals that the neural network has developed an 
adequate control policy: light loads p s; 0.8 spontaneously result in low values of na and 
require no control (u = 1.25 guarantees ample token supply. and n, ::: 0). but as p 
exceeds 1. the system is controlled by decreasing the value of u below 1. thus increasing 
n, to satisfy the requirement na IAR s; .1. Detailed results of the static performance in 
comparison with a standard stochastic approximation approach will be reported 
elsewhere. 

It is in the tracking of a time-varying environment that the power of the neural network 
controller is revealed. A network trained under a varying offered load is tested 
dynamically by monitoring the distribution of abandonments and rejections as the 
network controls an environment varying at the same rate y as used during training. The 
abandonment distribution Fa(x) = Prob {nalAR s; xj. shown in Fig. 2 (a) for y = 1. 
indicates that the neural network (NN) controller outperforms both stochastic 
approximation} (SA) and the uncontrolled system (UN): the probability of keeping the 
abandonment rate n, I AR bounded is larger for the NN controller for all values of the 
bound x. As for the goal of not exceeding x =.1. it is achieved with probability 
Fa(A) = 0.88 by the NN. in comparison to only Fa(.1) = 0.74 with SA or 
Fa(A) = 0.51 if UN. The rejection distribution F,(x) = Prob {n,/AR s; xj. shown in 
Fig. 2 (b) for y = 1. illustrates the stricter control policy provided by NN. Results for 
y = 0.1 and y = 10, not shown here. confirm the superiority of the control policy 

I Stochastic approximation with a fixed gain, to enable the controller to track time-varying environments. 
The gain was optimized nwnerically. 
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developed by the neural network. 
ABAHDOHMEHTS DISTRIBUTIOH REJECTIOHS DISTRIBUTIOH 

.9 . 9 

.8 .8 

. 7 .7 

.S .S 

.5 .5 

. 4 .4 

• nec.r1S I contro II er 
. 3 . 3 

• nelrlSl controller 

.2 a stochastic approxi~tion . 2 a stochastic approxi~tion 

.1 o lI'lControll ad .1 o lI'lContro II ad 

O~~-+ __ ~~~~~+-~ __ --4 
o .1 .2 .3 . 4 .5.S .8 .S 

O~~-+ __ ~~-+~~~_~I~~ 
o .1 .2 .3.4 .S. 7 .8 .9 

Figure 2: (a) Abandonment distribution Fa (X), and (b) rejection distribution Fr(x). 

5 CONCLUSIONS 
The control of an unknown stochastic system requires a mapping that is implemented 
here via a feedforward layered neural network. A novel learning rule, a blend of 
stochastic approximation and back-propagation, is proposed to overcome the lack of 
training patterns through the use of on-line performance information provided by the 
system under control. Satisfactorily tested for an admission control problem, the 
approach shows promise for a variety of applications to congestion control in 
telecommunication networks. 
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