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Abstract 

Combining neuropharmacological experiments with computational model­
ing, we have shown that cholinergic modulation may enhance associative 
memory function in piriform (olfactory) cortex. We have shown that the 
acetylcholine analogue carbachol selectively suppresses synaptic transmis­
sion between cells within piriform cortex, while leaving input connections 
unaffected. When tested in a computational model of piriform cortex, 
this selective suppression, applied during learning, enhances associative 
memory performance. 

1 INTRODUCTION 

A wide range of behavioral studies support a role for the neurotransmitter acetyl­
choline in memory function (Kopelman, 1986; Hagan and Morris, 1989). However, 
the role of acetylcholine in memory function has not been linked to the specific 
neuropharmacological effects of this transmitter within cerebral cortical networks. 
For several years, we have explored cerebral cortical associative memory function 
using the piriform cortex as a model system (Wilson and Bower, 1988, Bower, 1990; 
Hasselmo et a/., 1991). The anatomical structure of piriform cortex (represented 
schematically in figure 1) shows the essential features of more abstract associative 
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matrix memory models (Haberly and Bower, 1989) 1. Afferent fibers in layer la 
provide widely distributed input, while intrinsic fibers in layer Ib provide extensive 
excitatory connections between cells within the cortex. Computational models of 
piriform cortex demonstrate a theoretical capacity for associative memory function 
(Wilson and Bower, 1988; Bower, 1990; Hasselmo et at., 1991). Recently, we have 
investigated differences in the physiological properties of the afferent and intrinsic 
fiber systems, using modeling to test how these differences affect memory function. 
In the experiments described below, we found a selective cholinergic suppression of 
intrinsic fiber synaptic transmission. When tested in a simplified model of piriform 
cortex, this modulation enhances associative memory performance. 

} Afferent fiber 
synapses (layer la) 

A. - -- -- ------ - - -_ .. Afferent input = 
I 

} Intrinsic fiber 
synapses (layer lb) = B .. 

IJ 

+- Neuron activation = ai(t) 

} Lateral inhibition 
(via interneurons) = H .. 

IJ 

Neuron output = g( ai (t» 

Figure 1: Schematic representation of piriform cortex, showing afferent input Ai 
(layer la) and intrinsic connections Bij (layer Ib) 

2 EXPERIMENTS 

To study differences in the effect of acetylcholine on afferent and intrinsic fiber 
systems, we applied the pharmacological agent carbachol (a chemical analogue 
of acetylcholine) to a brain slice preparation of piriform cortex while monitoring 
changes in the strength of synaptic transmission associated with each fiber system. 
In these experiments, both extracellular and intracellular recordings demonstrated 
clear differences in the effects of carbachol on synaptic transmission (Hasselmo and 
Bower, 1991). The results in figure 2 show that synaptic potentials evoked by 
activating intrinsic fibers in layer 1 b were strongly suppressed in the presence of 

1 For descriptions of standard associative memory models, see for example (Anderson 
et al., 1977; Kohonen et al., 1977). 
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100llM carbachol, while at the same concentration, synaptic potentials evoked by 
stimulation of afferent fibers in layer la showed almost no change. 

Control 1 x 10·oM Carbachol Washout 

2 3 

LAYER lA V V V 
O.SmV 

1 2 3 

V V 

V.5mv LAYER 1B 

20m. I 
Figure 2: Synaptic potentials recorded in layer la and layer Ib before, during, and 
after perfusion with the acetylcholine analogue carbachol. Carbachol selectively 
suppresses layer Ib (intrinsic fiber) synaptic transmission. 

These experiments demonstrate that there is a substantial difference in the neuro­
chemical modulation of synapses associated with the afferent and intrinsic fiber sys­
tems within piriform cortex. Cholinergic agents selectively suppress intrinsic fiber 
synaptic transmission without affecting afferent fiber synaptic transmission. While 
interesting in purely pharmacological terms, these differential effects are even more 
intriguing when considered in the context of our computational models of memory 
function in this region. 

3 MODELING 

To investigate the effects of cholinergic suppression of intrinsic fiber synaptic trans­
mission on associative memory function, we developed a simplified model of the 
piriform cortex. This simplified model is shown schematically in figure 1. At each 
time step, a neuron was picked at random, and its activation was updated as 

N 

ai(t + 1) = Ai(t) + 2)(1- C)Bij - Hij]g(aj(t». 
j=1 

where N = the number of neurons; t = time E {O, 1,2, ... }; c = a parameter 
representing the amount of acetylcholine present. c E [0,1]; ai = the activation or 
membrane potential of neuron i; g(ai) = the output or firing frequency of neuron 
i given ai; Ai = the input to neuron i, representing the afferent input from the 
olfactory bulb; Bij = the weight matrix or the synaptic strength from neuron j 
to neuron i; and Hij = the inhibition matrix or the amount that neuron j inhibits 
neuron i. To account for the local nature of inhibition in the piriform cortex, Hij = 0 
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for Ii - il > r and Hi; = h for Ii - il < r, where r is the inhibition radius. The 
function g(ai) was set to 0 if at < (Ja, where (Ja = a firing threshold; otherwise, it 
was set to "Yatanh(ai - (Ja), where "Ya = a firing gain. 

The weights were updated every N time steps according to the following hebbian 
learning rule. 

Bij = !(Wij) 
AWij = Wij(t + N) - Wij(t) = (1- c)"Yl(ai - (Jl)g(aj) 

The function !(.) is a saturating function, similar to g( .), used so that the weights 
could not become negative or grow arbitrarily large (representing a restriction on 
how effective synapses could become). "Yl is a parameter that adjusts learning 
speed, and (Jl is a learning threshold. The weights were updated every N time steps 
to account for the different time scales between synapse modification and neuron 
settling. 

3.1 TRAINING OF THE MODEL 

During learning, the model was presented with various vectors (taken to represent 
odors) at the input (Ai(t». The network was then allowed to run and the weights 
to adapt. 

The procedure for creating the set of vectors {Am 1m E {I, ... , M} } was: set Ai" = 
max{O, G(J.l, un, where G = gaussian with average J.l and standard deviation 0', and 
normalize the whole vector so that IIA m 112 = N ( 0'2 + J.l2). M = number of memories 
or odors presented to network during training, and Ai" = the input to neuron i while 
odor m is present. 

During learning, in the asynchronous update equation, Ai(t) = At for T time steps, 
then Ai(t) = Al for the next T time steps, and so on; i.e., the various odors were 
presented cyclically. 

3.2 PERFORMANCE MEASURE FOR THE MODEL 

The piriform cortex gets inputs from the olfactory bulb and sends outputs to other 
areas of the brain. Assuming that during recall the network receives noisy versions 
of the learned input patterns (or odors), we presume the piriform cortex performs 
a useful service if it reduces the chance of error in deciding which odor is present 
at the input. One way to quantify this is by using the minimum probability of 
classification error, Pe (from the field of pattern recognition 2). 

For the case of 2 odors corrupted by gaussian noise, Pe = the area underneath 
the intersection of the gaussians. For spherically symmetric gaussians with mean 
vectors J.ll and J.l2 and identical standard deviations 0', 

2 100 -u2d Pe = .;:; .L e u *, 
where d = 1IJ.l1 - J.l211. Thus, the important parameter is the amount of overlap as 
quantified by dIu - the larger the dIu, the lower the overlap and Pe . 

2See, for example, (Duda and Hart, 1973). 
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For more than 2 odors and for non-gaussian noise or non-spherically-symmetric 
gaussian noise, the equation for Pe becomes less tractable. But keeping with the 
above calculations, an analogue of dIu was developed as follows. ul was set = 
(IIx -lJiIl2), and then f3 was defined as 

f3 = L !llJi -lJj II 
i<i ~(Ui + Uj) 

where i,j E {I, ... , M}. Here, f3 is the analogue of dIu in the previous paragraph 
and is similar to an average over all odor pairs of dIu. 
For the model, if f3 is larger for the output vectors than for the input vectors, there 
is less overlap in the outputs, classification of the outputs is easier than classification 
of the inputs, and the model is serving a useful purpose. Thus, we use p = f3out! f3in 
as the performance measure. 

3.3 TESTING THE MODEL 

The model was designed to show whether the presence of acetylcholine has any 
influence on learning performance. To that end, the model was allowed to learn 
for a time with various levels of acetylcholine present, and then acetylcholine was 
turned off and the model was tested. 

For testing, weight adaptation was turned off, acetylcholine influence was turned 
off (c = 0), noisy versions of the various odors presented during learning were 
presented at the input, and the network was allowed to settle. From these noisy 
input/output pairs, u's could be estimated, f3in and f30ut could be calculated, and 
finally p could be calculated. Then, the state of the network could either be reset 
(for a new learning run) or be set to what it was before the test (so that learning 
could continue as if uninterrupted). 

3.4 RESULTS OF TESTING 

A typical example of a test run is shown in figure 3. There, c was varied from 0 (no 
acetylcholine) to .9 (a large concentration), and the various other parameters were: 
N = lO, M = 10, r = 2, h = .3, 'Ya = 1, 00 = 1, 'Yl = lO-3, Ol = 1, and T = 10. In 
the figure, large dark rectangles represent larger values of p. Small or non-existant 
rectangles represent values of p :5 1. 

Notice that, for a fixed amount of acetylcholine, the model's performance rises and 
then falls over time. Ideally, the performance should rise and then flatten out, as 
further learning should not degrade performance. The weight adaptation equation 
used in the model was not optimized to preclude overlearning (where all of the 
weights being reinforced have saturated to the largest allowed value). In principle, 
the function 1(·) could be used for this, perhaps in conjunction with a weight decay 
term. This was not of great concern since the peak performance is what indicates 
whether or not acetylcholine has a useful effect. Also, the more acetylcholine present, 
the longer the learning took. This is reasonable as, before saturation, AW ex: (I-C). 

Figure 4 shows maximum average performance for various values of acetylcholine. 
A verages were calculated by doing many tests like the one above. This is useful as 
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the odor inputs and the individual tests are stochastic in nature. Obviously, the 
larger values of acetylcholine enhance performance. 
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Figure 3: Sample test run, with time on the horizontal axis and acetylcholine level 
on the vertical axis. Larger black rectangles indicate better performance. 
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Figure 4: Maximum average performance vs. acetylcholine level. Acetylcholine 
increases the performance level attained. 
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4 CONCLUSION 

The results from the model show that suppression of connections between cells 
within the piriform cortex during learning enhances the performance during recall. 
Thus, acetylcholine released in the cortex during learning may enhance associative 
memory function. These results may explain some of the behavioral evidence for 
the role of acetylcholine in memory function and predict that acetylcholine may 
be released in cortical structures preferentially during learning. Further biological 
experiments are necessary to confirm this prediction. 
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