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Abstract

For lack of alternative models, search and decision processes have provided the
dominant paradigm for human memory access using two or more cues, despite
evidence against search as an access process (Humphreys, Wiles & Bain, 1990).
We present an alternative process to search, based on calculating the intersection
of sets of targets activated by two or more cues. Two methods of computing
the intersection are presented, one using information about the possible targets,
the other constraining the cue-target strengths in the memory matrix. Analysis
using orthogonal vectors to represent the cues and targets demonstrates the
competence of both processes, and simulations using sparse distributed
representations demonstrate the performance of the latter process for tasks
involving 2 and 3 cues.

1 INTRODUCTION

Consider a task in which a subject is asked to name a word that rhymes with oast. The
subject answers “most”, (or post, host, toast, boast, ...). Now the subject is asked to find
a word that means a mythical being that rhymes with oast. She or he pauses slightly and
replies “ghost”.

The difference between the first and second questions is that the first requires the use of
one cue to access memory. The second question requires the use of two cues — either
combining them before the access process, or combining the targets they access. There
are many experimental paradigms in psychology in which a subject uses two or more
cues to perform a task (Rubin & Wallace, 1989). One default assumption underlying
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many explanations for the effective use of two cues relies on a search process through
memory.

Models of human memory based on associative access (using connectionist models) have
provided an alternative paradigm to search processes for memory access using a single cue
(Anderson, Silverstein, Ritz & Jones, 1977; McClelland & Rumelhart, 1986), and for
two cues which have been studied together (Humphreys, Bain & Pike 1989). In some
respects, properties of these models correspond very closely to the characteristics of
human memory (Rumelhart, 1989). In addition to the evidence against search processes
for memory access using a single cue, there is also experimental evidence against
sequential search in some tasks requiring the combination of two cues, such as cued recall
with an extra-list cue, cued recall with a part-word cue, lexical access and semantic access
(Humphreys, Wiles & Bain, 1990). Furthermore, in some of these tasks it appears that
the two cues have never jointly occurred with the target. In such a situation, the tensor
product employed by Humphreys et. al. to bind the two cues to the target cannot be
employed, nor can the co-occurrences of the two cues be encoded into the hidden layer of a
three-layer network. In this paper we present the computational foundation for an
alternative process to search and decision, based on parallel (or direct) access for the
intersection of sets of targets that are retrieved in response to cues that have not been
studied together.

Definition of an intersection in the cue-target paradigm: Given a set of cue-target pairs,
and two (or more) access cues, then the intersection specified by the access cues is defined
to be the set of targets which are associated with both cues. If the cue-target strengths are
not binary, then they are constrained to lie between 0 and 1, and targets in the intersection
are weighted by the product of the cue-target strengths. A complementary definition for a
union process could be the set of targets associated with any one or more of the access
cues, weighted by the sum of the target strengths.

In the models that are described below, we assume that the access cues and targets are
represented as vectors, the cue-target associations are represented in a memory matrix and
the set of targets retrieved in response to one or more cues is represented as a linear
combination, or blend, of target vectors associated with that cue or cues. Note that under
this definition, if there is more than one target in the intersection, then a second stage is
required to select a unique target to output from the retrieved linear combination. We do
not address this second stage in this paper.

A task requiring intersection: In the rhyming task described above, the rhyme and
semantic cues have extremely low separate probabilities of accessing the target, ghost,
but a very high joint probability. In this study we do not distinguish between the
representation of the semantic and part-word cues, although it would be required for a
more detailed model. Instead, we focus on the task of retrieving a target weakly associated
with two cues. We simulate this condition in a simple task using two cues, C7 and C»,
and three targets, T7, T2 and T3. Each cue is strongly associated with one target, and
weakly associated with a second target, as follows (strengths of association are shown
above the arrows):

C;1+3 T; C;+b T Cz+b Tp andCy-3 Ts.
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The intersection of the targets retrieved to the two cues, Cy and C, is the target, T2,
with a strength of 0.01. Note that in this example, a model based on vector addition
would be insufficient to select target, T2, which is weakly associated with both cues, in
preference to either target, T7 or T3, which are strongly associated with one cue each.

2 IMPLEMENTATIONS OF INTERSECTION PROCESSES

2.1 LOCAL REPRESENTATIONS

Given a local representation for two sets of targets, their intersection can be computed by
multiplying the activations elicited by each cue. This method extends to sparse
representations with some noise from cross product terms, and has been used by Dolan
and Dyer (1989) in their tensor model, and Touretzky and Hinton (1989) in the
Distributed Connectionist Production System (for further discussion see Wiles,
Humphreys, Bain & Dennis, 1990). However, multiplying activation strengths does not
extend to fully distributed representations, since multiplication depends on the basis
representation (i.e., the target patterns themselves) and the cross-product terms do not
necessarily cancel. One strong implication of this for implementing an intersection
process, is that the choice of patterns is not critical in a linear process (such as vector
addition) but can be critical in a non-linear process (which is necessary for computing
intersections). An intersection process requires more information about the target patterns
themselves.

It is interesting to note that the inner product of the target sets (equivalent to the match
process in Humphreys et. al.'s (1989) Matrix model) can be used to determine whether or
not the intersection of targets is empty, if the target vectors are orthogonal, although it
cannot be used to find the particular vectors which are in the intersection.

2.2 USING INFORMATION ABOUT TARGET VECTORS

A local representation enables multiplication of activation strengths because there is
implicit knowledge about the allowable target vectors in the local representation itself.
The first method we describe for computing the intersection of fully distributed vectors
uses information about the targets, explicitly represented in an auto-associative memory,
to filter out cross-product terms: In separate operations, each cue is used to access the
memory matrix and retrieve a composite target vector (the linear combination of
associated targets). A temporary matrix is formed from the outer product of these two
composite vectors. This matrix will contain product terms between all the targets in the
intersection set as well as noise in the form of cross-product terms. The cross-product
terms can be filtered from the temporary matrix by using it as a retrieval cue for accessing
a three-dimensional auto-associator (a tensor of rank 3) over all the targets in the original
memory. If the target vectors are orthonormal, then this process will produce a vector
which contains no noise from cross-product terms, and is the linear combination of all
targets associated with both cues (see Box 1).
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Box 1. Creating a temporary matrix from the product of the target vectors, then filtering
out the noise terms: Let the cues and targets be represented by vectors which are mutually
orthonormal (i.e., Ci.C;=TiT;=1,Ci.Cj=T;.Tj = 0,4, j = 1,2,3). The memory
matrix, M, is formed from cue-target pairs, weighted by their respective strengths, as
follows:

M = 09C;T;'+0.1C; T,' +0.1C; T,' + 0.9C, T3’

where T" represents the transpose of 7, and C; T} is the outer product of C; and T;.

In addition, let Z be a three-dimensional auto-associative memory (or tensor of rank 3)
created over three orthogonal representations of each target (i.e., T; is a column vector, 7'
is a row vector which is the transpose of T;, and T;" is the vector in a third direction
orthogonal to both, where i=1,2,3), as follows:

zZ = ZTT'TY

Let a two-dimensional temporary matrix, X, be formed by taking the outer product of
target vectors retrieved to the access cues, as follows:

X = MMy
(0.9T; + 0.1T,) (0.1T, + 0.9T3)’

0.09T;T,' + 0.81T;T3' + 0.01T,T,' + 0.09T,T;'

Using the matrix X to access the auto-associator Z, will produce a vector from which all
the cross-product terms have been filtered, as follows:

XZ = (0.097T;T, + 0.81T;T3 + 0.01T,T,' + 0.09T>T3' ) (; T; T;' T;")
= (Q.09T,Ty') (5 T; T/ T;") + (O.81T;T3') (3 T; T ;")
+ (001,13 ) (i T; Ty T7") + (0.09T5T3') (B T; T T;")
= (0.017,15') (T, T5'TZ") since all other terms cancel.
= 0.017,"
This vector is the required intersection of the linear combination of target vectors

associated with both the input cues, C; and C, weighted by the product of the strengths
of associations from the cues to the targets.

A major advantage of the above process is that only matrix (or tensor) operations are used,
which simplifies both the implementation and the analysis. The behaviour of the system
can be analysed either at the level of behaviours of patterns, or using a coordinate system
based on individual units, since in a linear system these two levels of description are
isomorphic. In addition, the auto-associative target matrix could be created incrementally
when the target vectors are first learnt by the system using the matrix memory. The
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disadvantages include the requirement for dynamic creation and short term storage of the
two dimensional product-of-targets matrix, and the formation and much longer term
storage of the three dimensional auto-associative matrix. It is possible, however, that an
auto-associator may be part of the output process.

2.3 ADDITIVE APPROXIMATIONS TO MULTIPLICATIVE PROCESSES

An alternative approach to using the target auto-associator for computing the intersection,
is to incorporate a non-linearity at the time of memory storage, rather than memory
access. The aim of this transform would be to change the cue-target strengths so that
linear addition of vectors could be used for computing the intersection. An operation that
is equivalent to multiplication is the addition of logarithms. If the logarithm of each cue-
target strength was calculated and stored at the time of association, then an additive access
process would retrieve the intersection of the inputs. More generally, it may be possible
to use an operation that preserves the same order relations (in terms of strengths) as
multiplication. It is always possible to find a restricted range of association strengths
such that the sum of a number of weak cue-target associations will produce a stronger
target activation than the sum of a smaller number of strong cue-target associations. For
example, by scaling the target strengths to the range [(n-1)/n, 1] where n is the number
of simultaneously available cues, vector addition can be made to approximate
multiplication of target strengths.

This method has the advantage of extending naturally to non-orthogonal vectors, and to
the combination of three or more cues, with performance limits determined solely by
cross-talk between the vectors. Time taken is proportional to the number of cues, and
noise is proportional to the product of the set sizes and cross-correlation between the
vectors.

3 SIMULATIONS OF THE ADDITIVE PROCESS

Two simulations of the additive process using scaled target strengths were performed to
demonstrate the feasibility of the method producing a target weakly associated with two
cues, in preference to targets with much higher probabilities of being produced in
response to a single cue. As a work-around for the problem of how (and when) to
decompose the composite output vector, the target with the strongest correlation with the
composite output was selected as the winner. To simulate the addition of some noise,
non-orthogonal vectors were used.

The first simulation involved two cues, C; and C2, and three targets, T'7, T2 and T3,
represented as randomly generated 100 dimensional vectors, 20% 1s, the remainder Os.
Cue Cj was strongly associated with target T7 and weakly associated with target T, cue
C, was strongly associated with target T3 and weakly associated with target T2. A trial
consisted of generating random cue and target vectors, forming a memory matrix from
their outer products (multiplied by 0.9 for strong associates and 0.6 for weak associates;
note that these strengths have been scaled to the range, [0,1]), and then pre-multiplying
the memory matrix by the appropriate cue (i.e., either C; or C2 or C; + C2).
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The memory matrix, M, was formed as shown in Box 1. Retrieval to a cue, C7 , was as
follows: C} M =09 C] .C1 TJ' + 0.6 C} .C} Tz' + 0.6 C} .C2 Tzlr + 0.9 CI-CQ T_:,-f. In
this case, the cross product terms, C;.C2, do not cancel since the vectors are not
orthogonal, although their expected contribution to the output is small (expected
correlation 0.04). The winning target vector was the one that had the strongest
correlation (smallest normalized dot product) with the resulting output vector. The results
are shown in Table 1.

Table 1: Number of times each target was retrieved in 100 trials.

t1 12 t3

cl 92 8 0
c2 0 9 91
cl+c2 11 80 9

Over 100 trials, the results show that when either cue C; or C2 was presented alone, the
target with which it was most strongly paired was retrieved in over 90% of cases. Target
T> had very low probabilities of recall given either Cj or C2 (8% and 9% respectively),
however, it was very likely to be recalled if both cues were presented (80%).

The first simulation demonstrated the multi-cue paradigm with the simple two-cue and
three-target case. In a second simulation, the system was tested for robustness in a
similar case involving three cues, Cj to C3, and four targets, T'7 to T4. The results
show that T4 had low probabilities of recall given either C; , C2 or C3 (13%, 22% and
18% respectively), medium probabilities of recall given a combination of two cues (36%,
31% and 28%), and was most likely to be recalled if all three cues were presented (44%).
For this task, when three cues are presented concurrently, in the ideal intersection only T4
should be produced. The results show that it is produced more often than the other targets
(44% compared with 22%, 18% and 16%), each of which is strongly associated with two
out of the three cues, but there is considerably more noise than in the two-cue case. (See
Wiles, Humphreys, Bain & Dennis, 1990, for further details.)

4 DISCUSSION

The simulation results demonstrated the effect of the initial scaling of the cue-target
strengths, and non-linear competition between the target outputs. It is important to note
the difference between the association strengths from cues to targets and the cued recall
probability of each target. In memory research, the association strengths have been
traditionally identified with the probability of recall. However, in a connectionist model
the association strengths are related to the weights in the network and the cued recall
probability is the probability of recall of a given target to a given cue.

This paper builds on the idea that direct access is the default access method for human
memory, and that all access processes are cue based. The immediate response from
memory is a blend of patterns, which provide a useful intermediate stage. Other processes
may act on the blend of patterns before a single target is selected for output in a
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successive stage. One such process that may act on the intermediate representation is an
intersection process that operates over blends of targets. Such a process would provide an
alternative to search as a computational technique in psychological paradigms that use
two or more cues. We don’t claim that we have described the way to implement such a
process — much more is required to investigate these issues. The two methods presented
here have served to demonstrate that direct access intersection is a viable neural network
technique. This demonstration means that more processing can be performed in the
network dynamics, rather than by the control structures that surround memory.
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