
Planning with an Adaptive World Model

Sebastian B. Thrun
German National Research
Center for Computer
Science (GMD)

Knut Moller
University of Bonn

Department of
Computer Science

D-5300 Bonn, FRG

Alexander Linden
German National Research

Center for Computer
Science (GMD)

D-5205 St. Augustin, FRG D-5205 St. Augustin, FRG

Abstract

We present a new connectionist planning method [TML90]. By interaction
with an unknown environment, a world model is progressively construc­
ted using gradient descent. For deriving optimal actions with respect to
future reinforcement, planning is applied in two steps: an experience net­
work proposes a plan which is subsequently optimized by gradient descent
with a chain of world models, so that an optimal reinforcement may be
obtained when it is actually run. The appropriateness of this method is
demonstrated by a robotics application and a pole balancing task.

1 INTRODUCTION

Whenever decisions are to be made with respect to some events in the future,
planning has been proved to be an important and powerful concept in problem
solving. Planning is applicable if an autonomous agent interacts with a world, and
if a reinforcement is available which measures only the over-all performance of the
agent. Then the problem of optimizing actions yields the temporal credit assignment
problem [Sut84], i.e. the problem of assigning particular reinforcements to particular
actions in the past. The problem becomes more complicated if no knowledge about
the world is available in advance.
Many connectionist approaches so far solve this problem directly, using techniques
based on the interaction of an adaptive world model and an adaptive controller
[Bar89, Jor89, Mun87]. Although such controllers are very fast after training, trai­
ning itself is rather complex, mainly because of two reasons: a) Since future is not
considered explicitly, future effects must be directly encoded into the world model.
This complicates model training. b) Since the controller is trained with the world
model, training of the former lags behind the latter. Moreover, if there do exist

450

Planning with an Adaptive World Model 451

: :

state

Figure 1: The training of the model network is a system identification task.
Internal parameters are estimated by gradient descent, e.g. by backpropagation.

several optimal actions, such controllers will only generate at most one regardless of
all others, since they represent many-to-one functions. E.g., changing the objective
function implies the need of an expensive retraining.
In order to overcome these problems, we applied a planning technique to reinforce­
ment learning problems. A model network which approximates the behavior of the
world is used for looking ahead into future and optimizing actions by gradient des­
cent with respect to future reinforcement. In addition, an experience network is
trained in order to accelerate and improve planning.

2 LOOK-AHEAD PLANNING

2.1 SYSTEM IDENTIFICATION

Planning needs a world model. Training of the world model,is adopted from
[Bar89, Jor89, Mun87]. Formally, the world maps actions to subsequent states and
reinforcements (Fig. 1). The world model used here is a standard non-recurrent or
a recurrent connectionist network which is trained by backpropagation or related
gradient descent algorithms [WZ88, TS90]. Each time an action is performed on the
world their resulting state and reinforcement is compared with the corresponding
prediction by the model network. The difference is used for adapting the internal pa­
rameters of the model in small steps, in order to improve its accuracy. The resulting
model approximates the world's behavior.
Our planning technique relies mainly on two fundamental steps: Firstly, a plan is
proposed either by some heuristic or by a so-called experience network. Secondly,
this plan is optimized progressively by gradient descent in action space. First, we
will consider the second step.

2.2 PLAN OPTIMIZATION

In this section we show the optimization of plans by means of gradient descent. For
that purpose, let us assume an initial plan, i.e. a sequence of N actions, is given. The
first action of this plan together with the current state (and, in case of a recurrent
model network, its current context activations) are fed into the model network (Fig.
2). This gives us a prediction for the subsequent state and reinforcement of the world.
If we assume that the state prediction is a good estimation for the next state, we can
proceed by predicting the immediate next state and reinforcement from the second
action of the plan correspondingly. This procedure is repeated for each of the N
stages of the plan. The final output is a sequence of N reinforcement predictions,
which represents the quality of the plan. In order to maximize reinforcement, we

452 Thrun, l\1OIler, and Linden

"')}"".".' .. '. ~ __ m_od_e_l_n_e-.-r_o_r_k_(N_J_---,11-oI .1---- plan: JVlh action

•••• ...r.=..
....

• •
model network (2) ~-- plan: 2nd action

.. :/;:::":;:/::;">:>:.
model network (1) 1+--- plan: lit action

L.....-____ ,--,,.--_.:.-;..._---l (PLANNING RESULT)

context units
recurrent networks on!

Figure 2: Looking ahead by the chain of model networks.

establish a differentiable reinforcement energy function Ereinf, which measures the
deviation of predicted and desired reinforcement. The problem of optimizing plans
is transformed to the problem of minimizing Ereinf' Since both Ereinf and the chain
of model networks are differentiable, the gradients of the plan with respect to Ereinf

can be computed. These gradients are used for changing the plan in small steps,
which completes the gradient descent optimization.
The whole update procedure is repeated either until convergence is observed or,
which makes it more convenient for real-time applications, a predefined number of
iterations - note that in the latter case the computational effort is linear in N. From
the planning procedure we obtain the optimized plan, the first action1 of which is
then performed on the world. Now the whole procedure is repeated.

The gradients of the plan with respect to Ereinf can be computed either by back­
propagation through the chain of models or by a feed-forward algorithm which is
related to [WZ88, TS90]:
Hand in hand with the activations we propagate also the gradients

et, (r) a activationj (r)
a actioni (s)

(1)

through the chain of models. Here i labels all action input units and j all units of
the whole model network, r (1S;rS;N) is the time associated with the rth model of
the chain, and s (1<s<r) is the time of the sth action. Thus, for each action (V'i, s)
its influence on later activations (V'j, V'r>s) of the chain of networks, including all
predictions, is measured by et,(r).
It has been shown in an earlier paper that this gradient can easily be propagated
forward through the network [TML90]:

if j action input unit
if r=l 1\ j state/context input unit

et,(r) = if r>l 1\ j state/context input unit
(j' corresponding output unit of preceding model) (2)

logistic'(netj(r)). L weightjl e!.,(r) otherwise
IEpred(j)

11£ an unknown world is to be explored, this action might be disturbed by adding a
small random variable.

Planning with an Adaptive World Model 453

The reinforcement energy to be minimized is defined as
N

Ereinf - ~ L L gk (T) . (reinf~ - activationk (T») 2 •

T=l k

(3)

(k numbers the reinforcement output units, reinf~ is the desired reinforcement va­
lue, usually Vk: reinf~=l, and gk weights the reinforcement with respect to T and k,
in the simplest case gk(T)=l.) Since Ereinf is differentiable, we can compute the gra­
dient of Ereinf with respect to each particular reinforcement prediction. From these
gradients and the gradients ef, of the reinforcement prediction units the gradients

N

(i, _ {) {) ~rein() = - ~ ~ gk(T) . (reinf~ - activationk(T» . ef,(T) (4)
actloni S L.J L.J

T=' k

are derived which indicate how to change the plan in order to minimize Ereinf'

Variable plan lengths: The feed-forward manner of the propagation allows it
to vary the number of look-ahead steps due to the current accuracy of the model
network. Intuitively, if a model network has a relatively large error, looking far
into future makes little sense. A good heuristic is to avoid further look-ahead if the
current linear error (due to the training patterns) of the model network is larger
than the effect of the first action of the plan to the current predictions. This effect
is exactly the gradients efl (T). Using variable plan lengths might overcome the
difficulties in finding an appropriate plan length N a priori.

2.3 INITIAL PLANS - THE EXPERIENCE NETWORK

It remains to show how to obtain initial plans. There are several basic strategies
which are more or less problem-dependent, e.g. random, average over previous ac­
tions etc. Obviously, if some planning took place before, the problem of finding an
initial plan reduces to the problem of finding a simple action, since the rest of the
previous plan is a good candidate for the next initial plan.
A good way of finding this action is the experience network. This network is trai­
ned to predict the result of the planning procedure by observing the world's state
and, in the case of recurrent networks, the temporal context information from the
model network. The target values are the results of the planning procedure. Al­
though the experience network is trained like a controller [Bar89], it is used in a
different way, since outcoming actions are further optimized by the planning proce­
dure. Thus, even if the knowledge of the experience network lags behind the model
network's, the derived actions are optimized with respect to the "knowledge" of
the model network rather than the experience network. On the other hand, while
the optimization is gradually shifted into the experience network, planning can be
progressively shortened.

3 APPROACHING A ROLLING BALL WITH A ROBOT
ARM

We applied planning with an adaptive world model to a simulation of a real-time
robotics task: A robot arm in 3-dimensional space was to approach a rolling ball.
Both hand position (i.e. x,y,z and hand angle) and ball position (i.e. x' ,y') were
observed by a camera system in workspace. Conversely, actions were defined as
angular changes of the robot joints in configuration space. Model and experience

454 Thrun, MOller, and Linden

X-V-Space
H current hand pOS.
B current ball pos.
:8 previous ban pOS .

1·10 plans

Figure 3: (a) The recurrent model network (white) and the experience network (grey) at
the robotics task. (b) Planning: Starting with the initial plan 1, the approximation leads
finally to plan 10. The first action of this plan is then performed on the world.

networks are shown in Fig. 3a. Note that the ball movement was predicted by
a recurrent Elman-type network, since only the current ball position was visible
at any time. The arm prediction is mathematically more sophisticated, because
kinematics and inverse kinematics are required to solve it analytically.
The reason why planning makes sense at this task is that we did not want the robot
arm to minimize the distance between hand and ball at each step - this would
obviously yield trajectories in which the hand follows the ball, e.g.:

robot
arm

Figure 4: Basic strategy, the
arm "follows" the ball.

Instead, we wanted the system to find short cuts by making predictions about the
ball's next movement. Thus, the reinforcement measured the distance in workspace.
Fig. 3b illustrates a "typical" planning process with look-ahead N =4, 9 iterations,
gk(r) = 1.3T (c.f. (2))2, a weighted stepsize TJ = 0.05· 0.9T , and well-trained model
and experience networks. Starting with an initial plan 1 by the experience network

2This exponential function is crucial for minimizing later distances rather than the
sooner.

Planning with an Adaptive World Model 455

the optimization led to plan 10. It is clear to see that the resulting action surpassed
the initial plan, which demonstrates the appropriateness of the optimization.
The final trajectory was:

robot
arm

Figure 5: Planning: The
arm finds the short cut.

We were now interested in modifying the behavior of the arm. Without further
learning of either the model or the experience network, we wanted the arm to
approach the ball from above. For this purpose we changed the energy function (7):
Before the arm was to approach the ball, the energy was minimal if the arm reached
a position exactly above the ball. Since the experience network was not trained for
that task, we doubled the number of iteration steps. This led to:

robot
arm

Figure 6: The arm approa.­
ches from above due to a
modified energy function.

A first implementation on a real robot arm with a camera system showed similar
results.

4 POLE BALANCING

Next, we applied our planning method to the pole balancing task adopted from
[And89]. One main difference to the task described above is the fact that gradient
descent is not applicable with binary reinforcement, since the better the appro­
ximation by the world model, the more the gradient vanishes. This effect can be
prevented by using a second model network with weight decay, which is trained
with the same training patterns. Weight decay smoothes the binary mapping. By
using the model network for prediction only and the smoothed network for gradient
propagation, the pole balancing problem became solvable. We see this as a general

456 Thrun, MOller, and Linden

technique for applying gradient descent to binary reinforcement tasks.
We were especially interested in the dependency of look-ahead and the duration of
balance. It turned out that in most randomly chosen initial configurations of pole
and cart the look-ahead N = 4 was sufficient to balance the pole more than 20000
steps. If the cart is moved randomly, after on average 10 movements the pole falls.

5 DISCUSSION

The planning procedure presented in this paper has two crucial limitations. By using
a bounded look-ahead, effects of actions to reinforcement beyond this bound can
not be taken into account. Even if the plan lengths are kept variable (as described
above), each particular planning process must use a finite plan. Moreover, using
gradient descent as search heuristic implies the danger of getting stuck in local
minima. It might be interesting to investigate other search heuristics.
On the other hand this planning algorithm overcomes certain problems of adap­
tive controller networks, namely: a) The training is relatively fast, since the model
network does not include temporal effects. b) Decisions are optimized due to the
current "knowledge" in the system, and no controller lags behind the model net­
work. c) The incorporation of additional constraints to the objective function at
runtime is possible, as demonstrated. d) By using a probabilistic experience net­
work the planning algorithm is able to act as a non-deterministic many-to-many
controller. Anyway, we have not investigated the latter point yet.

Acknowledgements

The authors thank J org Kindermann and Frank Smieja for many fruitful discussions
and Michael Contzen and Michael FaBbender for their help with the robot arm.

References

[And89] C.W. Anderson. Learning to control an inverted pendulum using neural
networks. IEEE Control Systems Magazine, 9(3):31-37, 1989.

[Bar89] A. G. Barto. Connectionist learning for control: An overview. Technical
Report COINS TR 89-89, Dept. of Computer and Information Science,
University of Massachusetts, Amherst, MA, September 1989.

[Jor89] M. I. Jordan. Generic constraints on unspecified target constraints. In
Proceedings of the First International Joint Conference on Neural Net­
works, Washington, DC, San Diego, 1989. IEEE TAB NN Committee.

[Mun87] P. Munro. A dual backpropagation scheme for scalar-reward learning. In
Ninth Annual Conference of the Cognitive Science Society, pages 165-176,
Hillsdale, NJ, 1987. Cognitive Science Society, Lawrence Erlbaum.

[Sut84] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts, 1984.

[TML90] S. Thrun, K. Moller, and A. Linden. Adaptive look-ahead planning. In
G. Dorffner, editor, Proceedings KONNAIIOEGAI, Springer, Sept. 1990.

[TS90] S. Thrun and F. Smieja. A general feed-forward algorithm for gradient-
descent in connectionist networks. TR 483, GMD, FRG, Nov. 1990.

[WZ88] R. J. Williams and D. Zipser. A learning algorithm for continually run­
ning fully recurrent neural networks. TR ICS Report 8805, Institute for
Cognitive Science, University of California, San Diego, CA, 1988.

