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Abstract 

ALCOVE is a connectionist model of human category learning that fits a 
broad spectrum of human learning data. Its architecture is based on well­
established psychological theory, and is related to networks using radial 
basis functions. From the perspective of cognitive psychology, ALCOVE can 
be construed as a combination of exemplar-based representation and error­
driven learning. From the perspective of connectionism, it can be seen as 
incorporating constraints into back-propagation networks appropriate for 
modelling human learning. 

1 INTRODUCTION 

ALCOVE is intended to accurately model human, perhaps non-optimal, performance 
in category learning. While it is a feed-forward network that learns by gradient 
descent on error, it is unlike standard back propagation (Rumelhart, Hinton & 
'''illiams, 1986) in its architecture, its behavior, and its goals. Unlike the standard 
back-propagation network, which was motivated by generalizing neuron-like per­
ceptrons, the architecture of ALCOVE was motivated by a molar-level psychological 
theory, Nosofsky's (1986) generalized context model (GCM). The psychologically 
constrained architecture results in behavior that captures the detailed course of hu­
man category learning in many situations where standard back propagation fares 
less well. And, unlike most applications of standard back propagation, the goal of 
ALCOVE is not to discover new (hidden-layer) representations after lengthy training, 
but rather to model the course of learning itself (Kruschke, 1990c), by determining 
which dimensions of the given representation are most relevant to the task, and how 
strongly to associate exemplars with categories. 
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Figure 1: The architecture of ALCOVE (Attention Learning covEring map). Exem­
plar nodes show their activation profile when r = q = 1 in Eqn. 1. 

2 THE MODEL 

Like the GCM, ALCOVE assumes that input patterns can be represented as points in a. 
multi-dimensional psychological space, as determined by multi-dimensiona.l scaling 
algorithms (e.g., Shepard, 1962). Each input node encodes a single psychological 
dimension, with the activation of the node indicating the value of the stimulus on 
that dimension. Figure 1 shows the architecture of ALCOVE, illustrating the case of 
just two input dimensions. 

Each input node is gated by a dimensional attention strength ai. The attention 
strength on a dimension reflects the relevance of that dimension for the particular 
categorization task at hand, and the model learns to allocate more attention to 
relevant dimensions and less to irrelevant dimensions. 

Each hidden node corresponds to a position in the multi-dimensional stimulus space, 
with one hidden node placed at the position of every training exemplar. Each hidden 
node is activated according to the psychological similarity of the stimulus to the 
exemplar represented by the hidden node. The similarity function comes from the 
GCM and the work of Shepard (1962; 1987): Let the position of the ph hidden 
node be denoted as (hjl' hj2' ... ), and let the activation of the ph hidden node be 
denoted as ajid. Then 

(1) 

where c is a positive constant called the specificity of the node, where the sum is 
taken over all input dimensions, and where rand q are constants determining the 
similarity metric and similarity gradient, respectively. For separable psychologica.l 
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Figure 2: (a) Increasing attention on the horizontal axis and decreasing attention on 
the vertical axis causes exemplars of the two categories (denoted by dots and + 's) to 
have greater between-category dissimilarity and greater within-category similarity. 
(After Nosofsky, 1986, Fig. 2.) (b) ALCOVE cannot differentially attend to diagonal 
axes. 

dimensions, the city-block metric (1' = 1) is used, while integra.l dimensions might 
call for a Euclidean metric (r = 2). An exponential similarity gradient (q = 1) is 
used here (Shepard, 1987; this volume), but a Gaussian similarity gradient (q = 2) 
can sometimes be appropriate. 

The dimensional attention strengths adjust themselves so that exemplars from dif­
ferent categories become less similar, and exemplars within categories become more 
similar. Consider a simple case of four stimuli that form the corners of a square in 
input space, as in Figure 2(a). The two left stimuli are mapped to one category 
(indicated by dots) and the two right stimuli are mapped to another category (indi­
cated by +'s). ALCOVE learns to increase the attention strength on the horizontal 
axis, and to decrease the attention strength on the vertical axis. On the other hand, 
ALCOVE cannot stretch or shrink diagonally, as suggested in Figure 2(b). This con­
straint is an accurate reflection of human performance, in that categories separated 
by a diagonal boundary tend to take longer to learn than categories separa.ted by a 
boundary orthogonal to one dimension. 

Each hidden node is connected to output nodes that correspond to response cate­
gories. The connection from the lh hidden node to the kth category node hac; a 
connection weight denoted Wkj' called the association weight between the exemplar 
and the category. The output (category) nodes are activated by the linear rule used 
in the GCM and the network models of Gluck and Bower (1988a,b): 

aout - '" W ahid k - L..J kj j . (2) 
hid 
j 

In ALCOVE, unlike the GCM, the association weights are learned and can take on any 
real value, including negative values. Category activations are mapped to response 
probabilities using the same choice rule as was used in the GCM and network models . 
Thus, 

Pr(I<) = exp( ¢ alt) / L exp( ¢ akut ) 

out 
k 

(3) 
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where <p is a real-valued scaling constant. In other words, the probability of classify­
ing the given stimulus into category K is determined by the magnitude of category 
K's activation relative to the sum of all category activations. 

The dimensional attention strengths, Ck'i' and the association weights, wkj ' are 
learned by gradient descent on sum-squared error, as used in standard back prop­
agation (Rumelhart et al., 1986) and in the network models of Gluck and Bower 
(1988a,b). Details can be found in Kruschke (1990a,b). In fitting ALCOVE to human 
learning data, there are four free parameters: the fixed specificity c in Equation 1; 
the probability mapping constant <p in Equation 3; the association weight learning 
rate; and, the attention strength learning rate. 

In summary, ALCOVE extends Nosofsky's (1986) GCM by having a learning mecha­
nism and by allowing any positive or negative values for association weights, and 
it extends Gluck and Bower's (1988a,b) network models by including explict atten­
tion strengths and by using continuous input dimensions. It is a combination of 
exemplar-based category representations with error-driven learning, as alluded to 
by Estes et al. (1989; see also Hurwitz, 1990). ALCOVE can also be construed as a 
form of (non-)radial basis function network, if r = q = 2 in Equation 1. In the form 
described here, the hidden nodes are placed at positions where training exemplars 
occur, but another option, described by Kruschke (1990a,b), is to scatter hidden 
nodes over the input space to form a covering map. Both these methods work 
well in fitting human data in some situations, but the exemplar-based a.pproach 
has advantages (Kruschke, 1990a,b). ALCOVE can also be compared to a standard 
back-propagation network that has adaptive attentional multipliers on its input 
nodes (cf. Mozer and Smolensky, 1989), but with fixed input-to-hidden weights 
(Kruschke 1990b, p.33). Such a network behaves similarly to a covering-map ver­
sion of ALCOVE. Moreover, such back-prop networks are susceptible to catastrophic 
retroactive interference (Ratcliff, 1990; McCloskey & Cohen, 1989), unlike ALCOVE. 

3 APPLICATIONS 

Several applications of ALCOVE to modelling human performance are detailed else­
where (Kruschke, 1990a,b); a few will be summarized here. 

3.1 RELATIVE DIFFICULTY OF CATEGORY STRUCTURES 

The classic work of Shepard, Hovland and Jenkins (1961) explored the relative 
difficulty of learning different category structures. As a simplified example, the 
linearly separable categories in Figure 2( a) are easier to learn than the exclusive-or 
problem (which would have the top-left and bottom-right exemplars mapped to 
one category, and the top-right and bottom-left mapped to the other). Shepard et 
al. carefully considered several candidate explanations for the varying difficulties, 
and concluded that some form of attentionallearning was necessary to a.ccount for 
their results. That is, people seemed to be able to determine which dimensions 
were relevant or irrelevant, and they allocated attention to dimensions a.ccordingly. 
Category structures with fewer relevant dimensions were easier to learn. ALCOVE 
has just the sort of attentional learning mechanism called for, and can match the 
relative difficulties observed by Shepard et al. 
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3.2 BASE-RATE NEGLECT 

A recent series of experiments (Gluck & Bower, 1988b; Estes et aI., 1989; Shanks, 
1990; Nosofsky et aI., 1991) investigated category learning when the assignment of 
exemplars to categories was probabilistic and the base rates of the categories were 
unequal. In these experiments, there were two categories (one "rare" and the other 
"common") and four binary-valued stimulus dimensions. The stimulus values were 
denoted sl and sl * for the first dimension, s2 and s2* for the second dimension, 
and so on. The probalities were arranged such that over the course of training, the 
normative probability of each category, given sl alone, was 50%. However, when 
presented with feature sl alone, human subjects classified it as the rare category 
significantly more than 50% of the time. It was as if people were neglecting the 
base rates of the categories. 

Gluck and Bower (1988b) and Estes et aI. (1989) compared two candidate models to 
account for the apparent base-rate neglect. One was a simple exemplar-based model 
that kept track of each training exemplar, and made predictions of categoriza tions 
by summing up frequencies of occurence of each stimulus value for each category. 
The exemplar-based model was unable to predict base-rate neglect. The second 
model they considered, the "double-node network," was a one-layer error-driven 
network that encoded each binary-valued dimension with a pair of input nodes. 
The double-node model was able show base-rate neglect. 

ALCOVE is an exemplar-based model, and so it is challenged by those results. In 
fact, Kruschke (1990a,b) and Nosofsky et aI. (1991) show that ALCOVE fits the trail­
by-trial learning and base-rate neglect data as well as or better than the double-node 
model. 

3.3 THREE-STAGE LEARNING OF RULES AND EXCEPTIONS 

One of the best-known connectionist models of human learning is Rumelhart and 
McClelland's (1986) model of verb past tense acquistion. One of the main phenom­
ena they wished to model was three-stage learning of irregular verbs: First a few 
high-frequency irregulars are learned; second, many regular verbs are learned with 
some interference to the previously learned irregulars; and third, the high-frequency 
irregulars are re-Iearned. l In order to reproduce three-stage learning in their model, 
Rumelhart and McClelland had to change the training corpus during learning, so 
that early on the network was trained with ten verbs, 80% of which were irregular, 
and later the network was trained with 420 verbs, only 20% of which were irregular. 
It remains a challenge to connectionist models to show three-stage learning of rules 
and exceptions while keeping the training set constant. 

While ALCOVE has not been applied to the verb-learning situation (and perhaps 
should not be, as a multi-dimensional similarity-space might not be a tractable 
representation for verbs), it can show three-stage learning of rules and exceptions 
in simpler but analogous situations. Figure 3 shows an arrangement of training 
exemplars, most of which can be classified by the simple rule, "if it's to the right 

lThere is evidence that three-stage learning is only very subtle in verb past tense 
acquisition (e.g., Marcus, 1990), but whether it exists more robustly in the simpler cat.egory 
learning domains addressed by ALCOVE is still an open question. 
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Figure 3: Left panel shows arrangement of rule-following (R) and exceptional (E) 
cases. Right panel shows the performance of ALCOVE. The ratio of E to R cases 
and all parameters of the model were fixed throughout training. 

of the dashed line, then it's in the 'rectangle' category, otherwise it's in the 'oval' 
category." The rule-following cases are marked with an "R." There are two ex­
ceptional cases near the dashed line, marked with an "E." Exceptional exemplars 
occurred 4 times as often as rule-following exemplars. The right panel of Figure 3 
shows that ALCOVE initially learns the E cases better than the R cases, but that 
later in learning the R cases surpass the E's. The reason is that early in learning, 
ALCOVE is primarily building up association weights and has not yet shifted much 
attention away from the irrelevant dimension. Associations from the E cases grow 
more quickly because they are more frequent. Once the associations are established, 
then there is a basis for attention to be shifted away fWlll the irrelevant dimension, 
rapidly improving performance on the R cases. At the time of this writing, these 
results have the status of a provocative demonstration, but experiments with human 
subjects in similar learning situations are presently being undertaken. 
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