
Training Knowledge-Based Neural Networks to 
Recognize Genes in DNA Sequences 

Michiel O. Noordewier 
Computer Science 

Geoffrey G. Towell 
Computer Sciences 

University of Wisconsin 
Madison, WI 53706 

Jude W. Shavlik 
Computer Sciences 

University of Wisconsin 
Madison, WI 53706 

Rutgers University 
New Brunswick, NJ 08903 

Abstract 

We describe the application of a hybrid symbolic/connectionist machine 
learning algorithm to the task of recognizing important genetic sequences. 
The symbolic portion of the KBANN system utilizes inference rules that 
provide a roughly-correct method for recognizing a class of DNA sequences 
known as eukaryotic splice-junctions. We then map this "domain theory" 
into a neural network and provide training examples. Using the samples, 
the neural network's learning algorithm adjusts the domain theory so that 
it properly classifies these DNA sequences. Our procedure constitutes 
a general method for incorporating preexisting knowledge into artificial 
neural networks. We present an experiment in molecular genetics that 
demonstrates the value of doing so. 

1 Introduction 

Often one has some preconceived notions about how to perform some classifica­
tion task. It would be useful to incorporate this knowledge into a, neural net­
work, and then use some training examples to refine these approximately-correct 
rules of thumb. This paper describes the KBANN (Knowledge-Based Artificial Neu­
ral Networks) hybrid learning system and demonstrates its ability to learn in the 
complex domain of molecular genetics. Briefly, KBANN uses a knowledge base of 
hierarchically-structured rules (which may be both incomplete and incorrect) to 
form an artificial neural network (ANN). In so doing, KBANN makes it possible to 
apply neural learning techniques to the empirical improvement of knowledge bases. 

The task to be learned is the recognition of certain DNA (deoxyribonucleic acid) 
subsequences important in the expression of genes. A large governmental research 

530 



Training Knowledge-Based Neural Networks to Recognize Genes 531 

DNA 

D t EJ precursormRNA 
t 

I I mRNA (after splicing) 

t 
protein 

folded protein 

Figure 1: Steps in the Expression of Genes 

program, called the Human Genome Initiative, has recently been undertaken to 
determine the sequence of DNA in humans, estimated to be 3 x 109 characters of 
information. This provides a strong impetus to develop genetic-analysis techniques 
based solely on the information contained in the sequence, rather than in com­
bination with other chemical, physical, or genetic techniques. DNA contains the 
information by which a cell constructs protein molecules. The cellular expression 
of proteins proceeds by the creation of a "message" ribonucleic acid (mRNA) copy 
from the DNA template (Figure 1). This mRNA is then translated into a protein. 
One of the most unexpected findings in molecular biology is that large pieces of the 
mRNA are removed before it is translated further [1]. 

The utilized sequences (represented by boxes in Figure 1) are known as "exons", 
while the removed sequences are known as "introns", or intervening sequences. 
Since the discovery of such "split genes" over a decade ago, the nature of the 
splicing event has been the subject of intense research. The points at which DNA 
is removed (the boundaries of the boxes in Figure 1) are known as splice-junctions. 
The splice-junctions of eukaryotic1 mRNA precursors contain patterns similar to 
those in Figure 2. 

exon intron exon 

no (A/C) A Gil GT (A/G) A GT no (crr) 6 X (Crr) A Gil G (Grr) ... 

Figure 2: Canonical Splice-Junctions 
DNA is represented by a string of characters from the set {A,G,C,T}. 
In this figure, X represents any character, slashes represent disjunctive 
options, and subscripts indicate repetitions of a pattern. 

However, numerous other locations can resemble these canonical patterns. As a 
result, these patterns do not by themselves reliably imply the presence of a splice­
junction. Evidently, if junctions are to be recognized on the basis of sequence 
information alone, longer-range sequence information will have to be included in 

1 Eukaryotic cells contain nuclei, unlike prokaryotic cells such as bacterial and viruses. 



532 Noordewier, Towell, and Shavlik 

the decision-making criteria. A central problem is therefore to determine the extent 
to which sequences surrounding splice-junctions differ from sequences surrounding 
spurious analogues. 

We have recently described a method [9, 12] that combines empirical and sym­
bolic learning algorithms to recognize another class of genetic sequences known as 
bacterial promoters. Our hybrid KBANN system was demonstrated to be superior 
to other empirical learning systems including decision trees and nearest-neighbor 
algorithms. In addition, it was shown to more accurately classify promoters than 
the methods currently reported in the biological literature. In this manuscript we 
describe the application of KBANN to the recognition of splice-junctions, and show 
that it significantly increases generalization ability when compared to randomly­
initialized, single-hidden-Iayer networks (i.e., networks configured in the "usual" 
way). The paper concludes with a discussion of related research and the areas 
which our research is currently pursuing. 

2 The KBANN Algorithm 

KBANN uses a knowledge base of domain-specific inference rules in the form of 
PROLOG-like clauses to define what is initially known about a topic. The knowledge 
base need be neither complete nor correct; it need only support approximately 
correct reasoning. KBANN translates knowledge bases into ANNs in which units 
and links correspond to parts of knowledge bases. A detailed explanation of the 
procedure used by KBANN to translate rules into an ANN can be found in [12]. 

As an example of the KBANN method, consider the artificial knowledge base in 
Figure 3a which defines membership in category A. Figure 3b represents the hi­
erarchical structure of these rules: solid and dotted lines represent necessary and 
prohibitory dependencies, respectively. Figure 3c represents the ANN that results 
from the translation into a neural network of this knowledge base. Units X and Yin 
Figure 3c are introduced into the ANN to handle the disjunction in the knowledge 
base. Otherwise, units in the ANN correspond to consequents or antecedents in 
the knowledge base. The thick lines in Figure 3c represent the links in the ANN 
that correspond to dependencies in the explanation. The weight on thick solid lines 
is 3, while the weight on thick dotted lines is -3. The lighter solid lines represent 
the links added to the network to allow refinement of the initial rules. At present, 
KBANN is restricted to non-recursive, propositional (i.e., variable-free) sets of rules. 

Numbers beside the unit names in Figure 3c are the biases of the units. These 
biases are set so that the unit is active if and only if the corresponding consequent 
in the knowledge base is true. 

As this example illustrates, the use of KBANN to initialize ANNs has two principle 
benefits. First, it indicates the features believed to be important to an example's 
classification. Second, it specifies important derived features; through their deduc­
tion the complexity of an ANN's final decision is reduced. 



Training Knowledge-Based Neural Networks to Recognize Genes 533 

A:- B, C. A 
~ 

B :-notF, O. 

1\ B :-notH. 

C :-1,1. ·0 .. . 
• • • • • • 

F G H I J K 

a b 

Figure 3: Translation of a Knowledge Base into an ANN 

3 Problem Definition 

The splice-junction problem is to determine into which of the following three cate­
gories a specified location in a DNA sequence falls: (1) exon/intron borders, referred 
to as donors, (2) intron/exon borders, referred to as acceptors, and (3) neither. To 
address this problem we provide KBANN with two sets of information: a set of DNA 
sequences 60 nucleotides long that are classified as to the category membership of 
their center and a domain theory that describes when the center of a sequence 
corresponds to one of these three categories. 

Table 1 contains the initial domain theory used in the splice-junction recognition 
task. A special notation is used to specify locations in the DNA sequence. When a 
rule's antecedents refer to input features, they first state a relative location in the 
sequence vector, then the DNA symbol that must occur (e.g., @3=A). Positions 
are numbered negatively or positively depending on whether they occur before or 
after the possible junction location. By biological convention, position numbers of 
zero are not used. The set of rules was derived in a straightforward fashion from 
the biological literature [13]. Briefly, these rules state that a donor or acceptor 
sequence is present if characters from the canonical sequence (Figure 2) are present 
and triplets known as stop codons are absent in the appropriate positions. 

The examples were obtained by taking the documented split genes from all primate 
gene entries in Genbank release 64.1 [1] that are described as complete. Each 
training example consists of a window that covers 30 nucleotides before and after 
each donor and acceptor site. This procedure resulted in 751 examples of acceptor 
and 745 examples of donors. Negative examples are derived from similarly-sized 
windows, which did not cross an intron/exon boundary, sampled at random from 
these sequences. Note that this differs from the usual practice of generating ran­
dom sequences with base-frequency composition the same as the positive instances. 
However, we feel that this provides a more realistic training set, since DNA is known 
to be highly non-random [3]. Although many more negative examples were avail­
able, we used approximately as many negative examples are there were both donor 
and acceptors. Thus, the total data set we used had 3190 examples. 

The network created by KBANN for the splice-junction problem has one output 



534 Noordewier, Towell, and Shavlik 

Table 1: Knowledge Base for Splice-Junctions 

donor :- @-3=M, @-2=A, @-l=G, @l=G, @2=T, @3=R, 
@4=A, @5=G, @6=T, not(don-stop). 

don-stop :- @-3=T, @-2=A, @-l=A. don-stop :- @-4=T, @-3=A, @-2=G. 
don-stop :- @-3=T, @-2=A, @-l=G. don-stop :- @-4=T, @-3=G, @-2=A. 
don-stop :- @-3=T, @-2=G, @-l=A. don-stop :- @-5=T, @-4=A, @-3=A. 
don-stop :- @-4=T, @-3=A, @-2=A. don-stop :- @-5=T, @-4=A, @-3=G. 
don-stop :- @-5=T, @-4=G, @-3=A. 
acceptor :- pyr-rich, @-3=Y, @-2=A, @-l=G, @l=G, @2=K, not(ace-stop). 
pyr-rich :- 6 of (@-15=Y, @-14=Y, @-13=Y, @-12=Y, @-l1=Y, 

@-lO=Y, @-9=Y, @-8=Y, @-7=Y, @-6=Y.) 
ace-stop :- @l=T, @2=A, @3=A. ace-stop :- @2=T, @3=A, @4=A. 
acc-stop :- @l=T, @2=A, @3=G. acc-stop :- @2=T, @3=A, @4=G. 
acc-stop :- @l=T, @2=G, @3=A. acc-stop :- @2=T, @3=G, @4=A. 
ace-stop :- @3=T, @4=A, @5=A. acc-stop :- @3=T, @4=A, @5=G. 
acc-stop :- @3=T, @4=G, @5=A. 
R:- A. R:- G. Y:- C. Y:- T. M:- C. M:- A. K:- G. K:- T 

units for each category to be learned; and four input units for each nucleotide in 
the DNA training sequences, one for each of the four values in the DNA alphabet. In 
addition, the rules for ace-stop, don-stop, R, Y, and M are considered definitional. 
Thus, the weights on the links and biases into these units were frozen. Also, the 
second rule only requires that six of its 11 antecedents be true. Finally, there are 
no rules in Table 1 for recognizing negative examples. So we added four unassigned 
hidden units and connected them to all of the inputs and to the output for the 
neither category. The final result is that the network created by KBANN has 286 
units: 3 output units, 240 input units, 31 fixed-weight hidden units, and 12 tunable 
hidden units. 

4 Experimental Results 

Figure 4 contains a learning curve plotting the percentage of errors made on a set 
of "testing" examples by KBANN-initialized networks, as a function of the number 
of training examples. Training examples were obtained by randomly selecting ex­
amples from the population of 3190 examples described above. Testing examples 
consisted of all examples in the population that were not used for training. Each 
data point represents the average of 20 repetitions of this procedure. 

For comparison, the error rate for a randomly-initialized, fully-connected, two-layer 
ANN with 24 hidden units is also plotted in Figure 4. (This curve is expected to have 
an error rate of 67% for zero training examples. Test results were slightly better due 
to statistical fluctuations.) Clearly, the KBANN-initialized networks learned faster 
than randomly-initialized ANNs, making less than half the errors of the randomly­
initialized ANNs when there were 100 or fewer training examples. However, when 



Training Knowledge-Based Neural Networks to Recognize Genes 535 

CD 
CIJ 
C) 

60 

:§ 45 

m .... 
c: 
o 30 

~ 
L.. 

W -c: 15 

~ 
&. 

, 
~ 
• • • • • • • • 
~ , , 
'6 ... 

--a 0 KBANN network 
- - 4_ - - - - - ~ - . Randomly-weighted network 

..... ...... 
... 6--- __ 6_ ----6 ____ _ 

O~----r---~----~----r----' I i I I 
o 100 200 300 400 500 SOO 1000 1500 2000 

Number of Training Examples 

Figure 4: Learning Curve for Splice Junctions 

large numbers of training examples were provided the randomly-initialized ANNs 
had a slightly lower error rate (5.5% vs. 6.4% for KBANN). All of the differences in 
the figure are statistically significant. 

5 Related and Future Research 

Several others have investigated predicting splice-junctions. Staden [10] has devised 
a weight-matrix method that uses a perceptron-like algorithm to find a weighting 
function that discriminates two sets (true and false) of boundary patterns in known 
sequences. Nakata et al. [7] employ a combination of methods to distinguish be­
tween exons and introns, including Fickett's statistical method [5]. When applied to 
human sequences in the Genbank database; this approach correctly identified 81% 
of true splice-junctions. Finally, Lapedes et al. [6] also applied neural networks and 
decision-tree builders to the splice-junction task. They reported neural-network ac­
curacies of 92% and claimed their neural-network approach performed significantly 
better than the other approaches in the literature at that time. The accuracy we re­
port in this paper represents an improvement over these results. However, it should 
be noted that these experiments were not all performed under the same conditions. 

One weakness of neural networks is that it is hard to understand what they have 
learned. We are investigating methods for the automatic translation into symbolic 
rules of trained KBANN-initialized networks [11]. These techniques take advantage of 
the human-comprehensible starting configuration of KBANN's networks to create a 
small set of hierarchically-structured rules that accurately reflect what the network 
learned during training. We are also currently investigating the use of richer splice­
junction domain theories, which we hope will improve KBANN'S accuracy. 



536 N oordewier, lOwell, and Shavlik 

6 Conclusion 

The KBANN approach allows ANN s to refine preexisting knowledge, generating ANN 
topologies that are well-suited to the task they are intended to learn. KBANN does 
this by using a knowledge base of approximately correct, domain-specific rules to 
determine the ANN's structure and initial weights. This provides an alternative to 
techniques that either shrink [2] or grow [4] networks to the "right" size. Our exper­
iments on splice-junctions, and previously on bacterial promoters, [12] demonstrate 
that the KBANN approach can substantially reduce the number of training examples 
needed to reach a given level of accuracy on future examples. 

This research was partially supported by Office of Naval Research Grant N00014-90-J-1941, National 
Science Foundation Grant IRI-9002413, and Department of Energy Grant DE-FG02-91ER61129. 

References 

[1] R. J. Breathnach, J. L. Mandel, and P. Chambon. Ovalbumin gene is split in chicken 
DNA. Nature, 270:314-319, 1977. 

[2] Y. Le Cun, J. Denker, and S. Solla. Optimal brain damage. Advances in Neural 
Information Processing Systems 2, pages 598-605, 1990. 

[3] G. Dykes, R. Bambara, K. Marians, and R. Wu. On the statistical significance of 
primary structural features found in DNA-protein interaction sites. Nucleic Acids 
Research, 2:327-345, 1975. 

[4] S. Fahlman and C. Lebiere. The cascade-correlation learning architecture. Advances 
in Neural Information Processing Systems 2, pages 524-532, 1990. 

[5] J. W. Fickett. Recognition of protein coding regions in DNA sequences. Nucleic Acids 
Research, 10:5303-5318, 1982. 

[6] A. Lapedes, D. Barnes, C. Burks, R. Farber, and K. Sirotkin. Application of neu­
ral networks and other machine learning algorithms to DNA sequence analysis. In 
Computers and DNA, pages 157-182. Addison-Wesley, 1989. 

[7] K. Nakata, M. Kanehisa, and C. DeLisi. Prediction of splice junctions in mrna se­
quences. NucleIC Acids Research, 13:5327-5340, 1985. 

[8] M. C. O'Neill. Escherichia coli promoters: 1. Consensus as it relates to spacing 
class, specificity, repeat substructure, and three dimensional orgainzation. Journal of 
Biological Chemistry, 264:5522-5530, 1989. 

[9] J. W. Shavlik and G. G. Towell. An approach to combining explanation-based and 
neural learning algorithms. Connection Science, 1:233-255, 1989. 

[10] R. Staden. Computer methods to locate signals in DNA sequences. Nucleic Acids 
Research, 12:505-519, 1984. 

[11] G. G. Towell, M. Craven, and J. W. Shavlik. Automated interpretation of knowledge 
based neural networks. Technical report, University of Wisconsin, Computer Sciences 
Department, Madison, WI, 1991. 

[12] G. G. Towell, J. W. Shavlik, and M. O. Noordewier. Refinement of approximately 
correct domain theories by knowledge-based neural networks. In Proc. of the Eighth 
National Conf. on Artificial Intelligence, pages 861-866, Boston, MA, 1990. 

[13] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular 
Biology of the Gene, pages 634-647, 1987. 


