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Abstract 

The self-organization of recurrent feature-discovery networks is studied 
from the perspective of dynamical systems. Bifurcation theory reveals pa­
rameter regimes in which multiple equilibria or limit cycles coexist with the 
equilibrium at which the networks perform principal component analysis. 

1 Introduction 

Oja (1982) made the remarkable observation that a simple model neuron with an 
Hebbian adaptation rule develops into a filter for the first principal component of 
the input distribution. Several researchers have extended Oja's work, developing 
networks that perform a complete principal component analysis (PCA). Sanger 
(1989) proposed an algorithm that uses a single layer of weights with a set of 
cascaded feedback projections to force nodes to filter for the principal components. 
This architecture singles out a particular node for each principal component. Oja 
(1989) and Oja and Karhunen (1985) give a related algorithm that projects inputs 
onto an orthogonal basis spanning the principal subspace, but does not necessarily 
filter for the principal components themselves. 

In another class of models, nodes are forced to learn different statistical features 
by a set of lateral connections. Rubner and Schulten (1990) use cascaded lateral 
connections; the ith node receives signals from the input and all nodes j with j < i. 
The lateral connections are modified by an anti-Hebbian learning rule that tends 
to de-correlate the node responses . Like Sanger's scheme, this architecture singles 
out a particular node for each principal component. Kung and Diamantaras (1990) 
propose a different learning rule on the same network topology. Foldiak (1989) 
simulates a network with full lateral connectivity, but does not discuss convergence. 
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The goal of this paper is to help form a more complete picture of feature-discovery 
models that use lateral signal flow. We discuss two models with particular empha­
sis on their learning dynamics. The models incorporate Hebbian and anti-Hebbian 
adaptation, and recurrent lateral connections. We give stability analyses and derive 
bifurcation diagrams for the models. Stability analysis gives a lower bound on the 
rate of adaptation the lateral connections, below which the equilibrium correspond­
ing to peA is unstable. Bifurcation theory provides a description of the behavior 
near loss of stability. The bifurcation analyses reveal stable equilibria in which the 
weight vectors from the input are combinations of the eigenvectors of the input 
correlation. Limit cycles are also found. 

2 The Single-Neuron Model 

In Oja's model the input, x E R N , is a random vector assumed to be drawn from 
a stationary probability distribution. The vector of synaptic weights is denoted w 
and the post-synaptic response is linear; y = x . w. The continuous-time, ensemble 
averaged form of the learning rule is 

w < x y > - < y2 > w 

Rw - (w. Rw) w (1) 

where < ... > denotes the average over the ensemble of inputs, and R = < X xT > 
is the correlation matrix. The unit-magnitude eigenvectors of R are denoted 
ei, i = 1 ... N and are assumed to be ordered in decreasing magnitude of the 
associated eigenvalues Al > A2 > ... > AN > O. Oja shows that the weight vector 
asymptotically approaches ±el' The variance of the node's response is thus max­
imized and the node acts as a filter for the first principal component of the input 
distribution. 

3 Extending the Single Neuron Model 

To extend the model to a system of M ::5 N nodes we consider a set of linear neurons 
with weight vectors (called the forward weights) Wl •• . WM connecting each to 'the--- __ ~ 
N -dimensional input. Without interactions between the nodes in the array, all M 
weight vectors would converge to ±el. 

We consider two approaches to building interactions that force nodes to filter for 
different statistical features. In the first approach an internode potential is con­
structed. This formulation results in a non-local model. The model is made local 
by introducing lateral connections that naturally acquire anti-Hebbian a.daptation. 
For reasons that will become clear, the resulting model is referred to as a min­
imal coupling scheme. In the second approach, we write equations of motion of 
the forward weights based directly on (1). The evolution of the lateral connection 
strengths will follow a simple anti-Hebbian rule. 

3.1 Minimal Coupling 

The response of the ith node in the array is taken to be linear in the input 

(2) 
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The adaptation of the forward weights is derived from the potential 

U 1 ~ 2 C ~ 
2 L.J < Yi > + 2" L.J 

i i,k;i¢k 

1 M C M 
-2 ~ (Wj . RWj) + 2 2: (Wj' R Wk)2, (3) 

J j,k;j¢k 

where C is a coupling constant. The first term of U generates the Hebb law, 
while the second term penalizes correlated node activity (Yuille et al. 1989). The 
equations of motion are constructed to perform gradient descent on U with a term 
added to bound the weight vectors, 

-V"w. U 2 < Yi > Wi 

M 

< x Yi > - c 2: < Yi Yj > < x Yj > - < yi > Wi 

j¢i 

M 

RWi - C L: (Wi' RWj) RWj - (Wi' Rwd Wi. (4) 
j ¢i 

Note that Wi refers to the weight vector from the input to the ith node, not the ith 

component of the weight vector. 

Equation (4) is non-local as it involves correlations, < Yi Yj >, between nodes. In 
order to provide a purely local adaptation, we introduce a symmetric matrix of 
lateral connections 

1Jij i, j = 1, ... , M 

1Jii = O. 
These evolve according to 

1Jij -d (1Jij + C < Yi Yj > ) 
-d (1Jij + C Wi . RWj ) 

where d is a rate constant. In the limit of fast adaptation (large d) 

1Jij --+ -C < Yi Yj > . 
With this limiting behavior in mind, we replace (4) with 

M 

< XVi > + L: 1Jij < XYj > -
j¢i 

M 

2 < Yi > Wi 

RWi + L: 1Jij RWj - (Wi' RWi) Wi· 

j¢i 

Equations (5) and (6) specify the adaptation of the network. 

(5) 

(6) 

Notice that the response of the ith node is given by (2) and is thus independent of 
the signals carried on the lateral connections. In this sense the lateral signals affect 
node plasticity but not node response. This minimal coupling can also be derived 
as a low-order approximation to the model in §3.2 below. 
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3.1.1 Stability and Bifurcation 

By inspection the weight dynamics given by (5) and (6) have an equilibrium at 

(7) 

At this equilibrium the outputs are the first M principal components of input vec­
tors. In suitable coordinates the linear part of the equations of motion break into 
block diagonal form with any possible instabilities constrained to 3 x 3 sub-blocks. 
Details of the stability and bifurcation analysis are given in Leen (1991). The prin­
cipal component subspace is always asymptotically stable. However the equilibrium 
Xo is linearly stable if and only if 

d > do 
(Ai - Aj)2 (Ai + Aj) 

(8) 
A~ + A? 

I J 

C Co 
1 

1 ;:; (i,j) ;:; M. (9) > - Ai + Aj , 

At Co or do there is a qualitative change (a bifurcation) in the learning dynamics. If 
the condition on d is violated, then there is a Hopf bifurcation to oscillating weights. 
At the critical value Co there is a bifurcation to multiple equilibria. The bifurcation 
normal form was found by Liapunov-Schmidt reduction (see e.g. Golubitsky and 
Schaeffer 1984) performed at the bifurcation point (Xo, Co). To deal effectively with 
the large dimensional phase space of the network, the calculations were performed 
on a symbolic algebra program. 

At the critical point (Xo, Co) there is a supercritical pitchfork bifurcation. Two 
unstable equilibria appear near Xo for C > Co. At these equilibria the forward 
weights are mixtures of eM and eM -1 and the lateral connection strengths are 
non-zero. Generically one expects a saddle-node bifurcation. However Xo is an 
equilibrium for all values of C, and the system has an inversion symmetry. These 
conditions preclude the saddle-node and transcritical bifurcations, and we are left 
with the pitchfork. 

The position of stable equilibria away from (Xo, Co) can be found by examining 
terms of order five and higher in the bifurcation expansion. Alternatively we exam­
ine the bifurcation from the homogeneous solution, Xh, in which all weight vectors 
are proportional to el. For a system of two nodes this equilibrium is asymptotically 
stable provided 

(10) 

If Al < 3A2' then there is a supercritical pitchfork bifurcation at Ch. Two stable 
equilibria emerge from Xh for C > Ch. At these stable equilibria, the forward 
weight vectors are mixtures of the first two correlation eigenvectors and the lateral 
connection strengths are nonzero. 

The complete bifurcation diagram for a system of two nodes is shown in Fig . 1. The 
upper portion of the figure shows the bifurcation at (Xo, Co). The horizontal line 
corresponds to the peA equilibrium Xo. This equilibrium is stable (heavy line) for 
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C > Co, and unstable (light line) for C < Co. The subsidiary, unstable, equilibria 
that emerge from (Xo, Co) lie on the light, parabolic branches of the top diagram. 
Calculations indicate that the form of this bifurcation is independent of the number 
of nodes, and of the input dimension. Of course the value of Co increases with 
increasing number of nodes, c.f. (9). 

The lower portion of Fig. 1 shows the bifurcation from (Xh' Ch) for a system of two 
nodes. The horizontal line corresponds to the homogeneous equilibrium X h. This 
is stable for C < Ch and unstable for C > Ch. The stable equilibria consisting of 
mixtures of the correlation eigenvectors lie on the heavy parabolic branches of the 
diagram. For networks with more nodes, there are presumably further bifurcations 
along the supercritical stable branches emerging from (Xh' Ch); equilibria with 
qualitatively different eigenvector mixtures are observed in simulations. 

Each inset in the figure shows equilibrium forward weight vectors for both nodes in 
a two-node network. These configurations were generated by numerical integration 
of the equations of motion (5) and (6). The correlation matrix corresponds to an 
ensemble of noise vectors with short-range correlations between the components. 
Simulations of the corresponding discrete, pattern-by-pattern learning rule confirm 
the form of the weight vectors shown here. 

Figure 1: Bifurcation diagram for 
the minimal model 

3.2 Full Coupling 

~2 3.0tlr 
O.S . 

2 4 6 8 10 

AI 
Fig 2: Regions in the (>'1, >'2) plane cor­
responding to supercritical (shaded) and 
subcritical (unshaded) Hopf bifurcation. 

In a more conventional coupling scheme, the signals carried on the lateral connec­
tions affect the node activities directly. For linear node response, the vector of 
activities is given by 

(11) 

where y E RM, TJ is the !l1 x !If matrix of lateral connection st.rengths and w is an 
M x N matrix whose ith row is the forward weight vector to the ith node. The 
adaptation rule is 

w < yxT > _ Diag« yyT »w 

D TJ - C < yyT >, TJii = 0, 

(12) 

(13) 
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where D and C are constants and Diag sets the off-diagonal elements of its argument 
equal to zero. This system also has the peA equilibrium Xo. This is linearly stable 
if 

D > 0 

C > Co 
D 

(14) 

(15) 

Equation (14) tells us that the peA equilibrium is structurally unstable without the 
D'TJ term in (13). Without this term, the model reduces to that given by Foldiak 
(1989). That the latter generally does not converge to the peA equilibrium is 
consistent with the condition in (14). 

If, on the other hand, the condition on C is violated then the network undergoes a 
Hopf bifurcation leading to oscillations. Depending on the eigenvalue spectrum of 
the input correlation, this bifurcation may be subcritical (with stable limit cycles 
near Xo for C < Co), or supercritical (with unstable limit cycles near Xo for 
C > Co). Figure 2 shows the corresponding regions in the (.AI, .A2) plane for a 
network of two nodes with D = 1. Simulations show that even in the supercritical 
regime, stable limit cycles are found for C < Co, and for C > Co sufficiently 
close to Co. This suggests that the complete bifurcation diagram in the super­
critical regime is shaped like the bottom of a wine bottle, with only the indentation 
shown in figure 2. Under the approximation u ~ 1 + 'TJ, the super-critical regime is 
significantly narrowed. 

4 Discussion 

The primary goal of this study has been to give a theoretical description of learning 
in feature-discovery models; in particular models that use lateral interactions to 
ensure that nodes tune to different statistical features. The models presented here 
have several different limit sets (equilibria and cycles) whose stability and location 
in the weight space depends on the relative learning rates in the network, and 
on the eigenvalue spectrum of the input correlation. We have applied t.ools from 
bifurcation theory to qualitatively describe the location and determine stability of 
these different limiting solutions. This theoretical approach provides a unifying 
framework within which similar algorithms can be studied. 

Both models have equilibria at which the network performs peA. In addition, the 
minimal model has stable equilibria for which the forward weight vectors are mix­
tures of the correlation eigenvectors. Both models have regimes in which the weight 
vectors oscillate. The model given by Rubner et al. (1990) also loses stability 
through Hopf bifurcation for small values of the lateral learning rate. 

The minimal values of C in (9) and (15) for the stability of the peA equilibrium 
can become quite large for small correlation eigenvalues. These stringent conditions 
can be ameliorated in both models by the replacement 

d 'TJij -+ « Y; > + < YJ > ) 'TJij. 

However in the minimal model, this leads to degenerate bifurcations which have not 
been thoroughly examined. 
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Finally, it remains to be seen whether the techniques employed here extend to similar 
systems with non-linear node activation (e.g. Carlson 1991) or to the problem of 
locating multiple minima in cost functions for supervised learning models. 
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