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We describe a recurrent connectionist network, called CONCERT, that uses a 
set of melodies written in a given style to compose new melodies in that 
style. CONCERT is an extension of a traditional algorithmic composition tech­
nique in which transition tables specify the probability of the next note as a 
function of previous context. A central ingredient of CONCERT is the use of a 
psychologically-grounded representation of pitch. 

1 INTRODUCTION 

In creating music, composers bring to bear a wealth of knowledge about musical conven­
tions. If we hope to build automatic music composition systems that can mimic the abili­
ties of human composers, it will be necessary to incorporate knowledge about musical 
conventions into the systems. However, this knowledge is difficult to express: even hu­
man composers are unaware of many of the constraints under which they operate. 

In this paper, we describe a connectionist network that composes melodies. The network 
is called CONCERT, an acronym for connectionist composer of erudite tunes. Musical 
knowledge is incorporated into CONCERT via two routes. First, CONCERT-is trained on a 
set of sample melodies from which it extracts rules of note and phrase progressions. 
Second, we have built a representation of pitch into CONCERT that is based on psychologi­
cal studies of human perception. This representation, and an associated theory of gen­
eralization proposed by Shepard (1987), provides CONCERT with a basis for jUdging the 
similarity among notes, for selecting a response, and for restricting the set of alternatives 
that can be considered at any time. 

2 TRANSITION TABLE APPROACHES TO COMPOSITION 

We begin by describing a traditional approach to algorithmic music composition using 
Markov transition tables. This simple but interesting technique involves selecting notes 
sequentially according to a table that specifies the probability of the next note as a func-
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tion of the current note (Dodge & Jerse, 1985). The tables may be hand-constructed ac­
cording to certain criteria or they may be set up to embody a particular musical style. In 
the latter case, statistics are collected over a set of examples (hereafter, the training set) 
and the table entries are defined to be the transition probabilities in these examples. 

In melodies of any complexity, musical structure cannot be fully described by pairwise 
statistics. To capture additional structure, the transition table can be generalized from a 
two-dimensional array to n dimensions. In the n -dimensional table, often referred to as 
a table of order n -1, the probability of the next note is indicated as a function of the pre­
vious n -1 notes. Unfortunately, extending the transition table in this manner gives rise 
to two problems. First, the size of the table explodes exponentially with the amount of 
context and rapidly becomes unmanageable. Second, a table representing the high-order 
structure masks whatever low-order structure is present. 

Kohonen (1989) has proposed a scheme by which only the relevant high-order structure 
is represented. The scheme is symbolic algorithm that, given a training set of examples, 
produces a collection of rules - a context-sensitive grammar - sufficient for reproduc­
ing most or all of the structure inherent in the set. However, because the algorithm at­
tempts to produce deterministic rules - rules that always apply in a given context - the 
algorithm will not discover regularities unless they are absolute; it is not equipped to deal 
with statistical properties of the data. Both Kohonen's musical grammar and the transi­
tion table approach suffer from the further drawback that a symbolic representation of 
notes does not facilitate generalization. For instance, invariance under transposition is 
not directly representable. In addition, other similarities are not encoded, for example, 
the congruity of octaves. 

Connectionist learning algorithms offer the potential of overcoming the various limita­
tions of transition table approaches and Kohonen musical grammars. Connectionist algo­
rithms are able to discover relevant structure and statistical regularities in sequences 
(e.g., Elman, 1990; Mozer, 1989), and to consider varying amounts of context, noncon­
tiguous context, and combinations of low-order and high-order regularities. Connection­
ist approaches also promise better generalization through the use of distributed represen­
tations. In a local representation, where each note is represented by a discrete symbol, 
the sort of statistical contingencies that can be discovered are among notes. However, in 
a distributed representation, where each note is represented by a set of continuous feature 
values, the sort of contingencies that can be discovered are among features. To the ex­
tent that two notes share features, featural regularities discovered for one note may 
transfer to the other note. 

3 THE CONCERT ARCHITECTURE 

CONCERT is a recurrent network architecture of the sort studied by Elman (1990). A 
melody is presented to it, one note at a time, and its task at each point in time is to predict 
the next note in the melody. Using a training procedure described below, CONCERT's 
connection strengths are adjusted so that it can perform this task correctly for a set of 
training examples. Each example consists of a sequence of notes, each note being 
characterized by a pitch and a duration. The current note in the sequence is represented 
in the input layer of CONCERT, and the prediction of the next note is represented in the 
output layer. As Figure 1 indicates, the next note is encoded in two different ways: The 
next-note-distributed (or NND) layer contains CONCERT'S internal representation of the 
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note, while the next-note-Iocal (or NNL) layer contains one unit for each alternative. For 
now, it should suffice to say that the representation of a note in the NND layer, as well as 
in the input layer, is distributed, i.e., a note is indicated by a pattern of activity across the 
units. Because such patterns of activity can be quite difficult to interpret, the NNL layer 
provides an alternative, explicit representation of the possibilities. 
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Figure 1: The CONCERT Architecture 

The context layer represents the the temporal context in which a prediction is made. 
When a new note is presented in the input layer, the current context activity pattern is in­
tegrated with the new note to form a new context representation. Although CONCERT 

could readily be wired up to behave as a k -th order transition table, the architecture is far 
more general. The training procedure attempts to determine which aspects of the input 
sequence are relevant for making future predictions and retain only this task-relevant in­
formation in the context layer. This contrasts with Todd's (1989) seminal work on con­
nectionist composition in which the recurrent context connections are prewired and fixed, 
which makes the nature of the information Todd's model retains independent of the ex­
amples on which it is trained. 

Once CONCERT has been trained, it can be run in composition mode to create new pieces. 
This involves first seeding CONCERT with a short sequence of notes, perhaps the initial 
notes of one of the training examples. From this point on, the output of CONCERT can be 
fed back to the input, allowing CONCERT to continue generating notes without further 
external input. Generally, the output of CONCERT does not specify a single note with ab­
solute certainty; instead, the output is a probability distribution over the set of candidates. 
It is thus necessary to select a particular note in accordance with this distribution. This is 
the role of the selection process depicted in Figure 1. 

3.1 ACTIVATION RULES AND TRAINING PROCEDURE 

The activation rule for the context units is 

(1) 
j j 

where c,. (n) is the activity of context unit i following processing of input note Il (which 
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we refer to as step n), Xj (Il) is the activity of input unit j at step n, Wij is the connection 
strength from unit j of the input to unit i of the context layer, and Vij is the connection 
strength from unit j to unit i within the context layer, and s is a sigmoid activation func­
tion rescaled to the range (-1,1). Units in the NND layer follow a similar rule: 

nlldj (n ) .. s [LUjj Cj (n)] , 
j 

where mzdj (n ) is the activity of NND unit i at step nand Uij is the strength of connection 
from context unit j to NND unit i . 

The transformation from the NND layer to the NNL layer is achieved by first computing 
the distance between the NND representation, nnd(n), and the target (distributed) 
representation of each pitch i, Pi: 

d j = I nnd(n) - pj I , 
where 1·1 denotes the L2 vector norm. This distance is an indication of how well the 
NND representation matches a particular pitch. The activation of the NNL unit 
corresponding to pitch i, nlllj, increases inversely with the distance: 

1l111j(n) = e-d'/"Le-d} . 
j 

This normalized exponential transform (proposed by Bridle, 1990, and Rumelhart, in 
press) produces an activity pattern over the NNL units in which each unit has activity in 
the range (0,1) and the activity of all units sums to 1. Consequently, the NNL activity 
pattern can be interpreted as a probability distribution - in this case, the probability that 
the next note has a particular pitch. 

CONCERT is trained using the back propagation unfolding-in-time procedure (Rumelhart, 
Hinton, & Williams, 1986) using the log likelihood error measure 

E = - L log nnltgt (l1,p) , 
p,n 

where p is an index over pieces in the training set and 11 an index over notes within a 
piece; tgt is the target pitch for note 11 of piece p . 

3.2 PITCH REPRESENTATION 

Having described CONCERT's architecture and training procedure, we turn to the 
representation of pitch. To accommodate a variety of music, CONCERT needs the ability 
to represent a range of about four octaves. Using standard musical notation, these pitches 
are labeled as follows: C1, D1, ... , B1, C2, D2, ... B2, C3, ... C5, where C1 is the 
lowest pitch and C 5 the highest. Sharps are denoted by a #, e.g., F#3. The range 
C1-C5 spans 49 pitches. 

One might argue that the choice of a pitch representation is not critical because back pro­
pagation can, in principle, discover an alternative representation well suited to the task. 
In practice, however, researchers have found that the choice of external representation is 
a critical determinant of the network's ultimate performance (e.g., Denker et aI., 1987; 
Mozer, 1987). Quite simply, the more task-appropriate information that is built into the 
network, the easier the job the learning algorithm has. Because we are asking the net-
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work to make predictions about melodies that people have composed or to generate 
melodies that people perceive as pleasant, we have furnished CONCERT with a 
psychologically-motivated representation of pitch. By this, we mean that notes that peo­
ple judge to be similar have similar representations in the network, indicating that the 
representation in the head matches the representation in the network. 

Shepard (1982) has studied the similarity of pitches by asking people to judge the per­
ceived similarity of pairs of pitches. He has proposed a theory of generalization 
(Shepard, 1987) in which the similarity of two items is exponentially related to their dis­
tance in an internal or "psychological" representational space. (This is one justification 
for the NNL layer computing an exponential function of distance.) Based on psychophy­
sical experiments, he has proposed a five-dimensional space for the representation of 
pitch, depicted in Figure 2. 
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Figure 2: Pitch Representation Proposed by Shepard (1982) 

In this space, each pitch specifies a point along the pitch height (or PH) dimension, an 
(x ,y) coordinate on the chromatic circle (or CC), and an (x ,y) coordinate on the circle of 
fifths (or CF). we will refer to this representation as PHCCCF, after its three com­
ponents. The pitch height component specifies the logarithm of the frequency of a pitch; 
this logarithmic transform places tonal half-steps at equal spacing from one another along 
the pitch height axis. In the chromatic circle, neighboring pitches are a tonal half-step 
apart. In the circle of fifths, the perfect fifth of a pitch is the next pitch immediately 
counterclockwise. Figure 2 shows the relative magnitude of the various components to 
scale. The proximity of two pitches in the five-dimensional PHCCCF space can be deter­
mined simply by computing the Euclidean distance between their representations. 

A straightforward scheme for translating the PHCCCF representation into an activity pat­
tern over a set of connectionist units is to use five units, one for pitch height and two 
pairs to encode the (x ,y ) coordinates of the pitch on the two circles. Due to several prob­
lems, we have represented each circle over a set of 6 binary-valued units that preserves 
the essential distance relationships among tones on the circles (Mozer, 1990). The 
PHCCCF representation thus consists of 13 units altogether. Rests (silence) are assigned 
a code that distinguish them from all pitches. The end of a piece is coded by several 
rests. 
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4 SIMULATION EXPERIMENTS 

4.1 LEARNING THE STRUCTURE OF DIATONIC SCALES 

In this simulation, we trained CONCERT on a set of diatonic scales in various keys over a 
one octave range, e.g., 01 El F#1 Gl Al Bl C#2 02. Thirty-seven such scales 
can be made using pitches in the C l-C 5 range. The training set consisted of 28 scales 
- roughly 75% of the corpus - selected at random, and the test set consisted of the 
remaining 9. In 10 replications of the simulation using 20 context units, CONCERT 
mastered the training set in approximately 55 passes. Generalization performance was 
tested by presenting the scales in the test set one note at a time and examining CONCERT's 
prediction. Of the 63 notes to be predicted in the test set, CONCERT achieved remarkable 
performance: 98.4% correct. The few errors were caused by transposing notes one full 
octave or one tonal half step. 

To compare CONCERT with a transition table approach, we built a second-order transition 
table from the training set data and measured its performance on the test set. The transi­
tion table prediction (i.e., the note with highest probability) was correct only 26.6% of the 
time. The transition table is somewhat of a straw man in this environment: A transition 
table that is based on absolute pitches is simply unable to generalize correctly. Even if 
the transition table encoded relative pitches, a third-order table would be required to mas­
ter the environment. Kohonen's musical grammar faces the same difficulties as a transi­
tion table. 

4.2 LEARNING INTERSPERSED RANDOM WALK SEQUENCES 

The sequences in this simulation were generated by interspersing the elements of two 
simple random walk sequences. Each interspersed sequence had the following form: a l' 
bi> a2, b2, ... , as, bs, where al and b 1 are randomly selected pitches, ai+l is one step 
up or down from aj on the C major scale, and likewise for bi +1 and bj • Each sequence 
consisted of ten notes. CONCERT, with 25 context units, was trained on 50 passes through 
a set of 200 examples and was then tested on an additional 100. Because it is impossible 
to predict the second note in the interspersed sequences (b 1) from the first (a 1), this 
prediction was ignored for the purpose of evaluating CONCERT's performance. CONCERT 
achieved a performance of 91. 7% correct. About half the errors were ones in which CON­
CERT transposed a correct prediction by an octave. Excluding these errors, performance 
improved to 95.8% correct. 

To capture the structure in this environment, a transition table approach would need to 
consider at least the previous two notes. However, such a transition table is not likely to 
generalize well because, if it is to be assured of predicting a note at step 11 correctly, it 
must observe the note at step 11 -2 in the context of every possible note at step 11 -1. We 
constructed a second-order transition table from CONCERT'S training set. Using a testing 
criterion analogous to that used to evaluate CONCERT, the transition table achieved a per­
formance level on the test set of only 67.1 % correct. Kohonen's musical grammar would 
face the same difficulty as the transition table in this environment. 
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4.3 GENERATING NEW MELODIES IN THE STYLE OF BACH 

In a final experiment, we trained CONCERT on the melody line of a set of ten simple 
minuets and marches by J. S. Bach. The pieces had several voices, but the melody gen­
erally appeared in the treble voice. Importantly, to naive listeners the extracted melodies 
sounded pleasant and coherent without the accompaniment. 

In the training data, each piece was terminated with a rest marker (the only rests in the 
pieces). This allowed CONCERT to learn not only the notes within a piece but also when 
the end of the piece was reached. Further, each major piece was transposed to the key of 
C major and each minor piece to the key of A minor. This was done to facilitate learning 
because the pitch representation does not take into account the notion of musical key; a 
more sophisticated pitch representation might avoid the necessity of this step. 

In this simulation, each note was represented by a duration as well as a pitch. The dura­
tion representation consisted of five units and was somewhat analogous the PHCCCF 
representation for pitch. It allowed for the representation of sixteenth, eighth, quarter, 
and half notes, as well as triplets. Also included in this simulation were two additional 
input ones. One indicated whether the piece was in a major versus minor key, the other 
indicated whether the piece was in 3/4 meter versus 2/4 or 4/4. These inputs were fixed 
for a given piece. 

Learning the examples involves predicting a total of 1,260 notes altogether, no small feat. 
CONCERT was trained with 40 hidden units for 3000 passes through the training set. The 
learning rate was gradually lowered from .0004 to .0002. By the completion of training, 
CONCERT could correctly predict about 95% of the pitches and 95% of the durations 
correctly. New pieces can be created by presenting a few notes to start and then running 
CONCERT in composition mode. One example of a composition produced by CONCERT is 
shown in Figure 3. The primary deficiency of CONCERT's compositions is that they are 
lacking in global coherence. 

IF J tiS I 
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Figure 3: A Sample Composition Produced by CONCERT 
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5 DISCUSSION 

Initial results from CONCERT are encouraging. CONCERT is able to learn musical structure 
of varying complexity, from random walk sequences to Bach pieces containing nearly 
200 notes. We presented two examples of structure that CONCERT can learn but that can­
not be captured by a simple transition table or by Kohonen's musical grammar. 

Beyond a more systematic examination of alternative architectures, work on CONCERT is 
heading in two directions. First, the pitch representation is being expanded to account for 
the perceptual effects of musical context and musical key. Second, CONCERT is being ex­
tended to better handle the processing of global structure in music. It is unrealistic to ex­
pect that CONCERT, presented with a linear string of notes, could induce not only local re­
lationships among the notes, but also more global phrase structure, e.g., an AABA phrase 
pattern. To address the issue of global structure, we have designed a network that 
operates at several different temporal resolutions simultaneously (Mozer, 1990). 
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