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Abstract 

This work addresses three problems with reinforcement learning and adap­
tive neuro-control: 1. Non-Markovian interfaces between learner and en­
vironment. 2. On-line learning based on system realization. 3. Vector­
valued adaptive critics. An algorithm is described which is based on system 
realization and on two interacting fully recurrent continually running net­
works which may learn in parallel. Problems with parallel learning are 
attacked by 'adaptive randomness'. It is also described how interacting 
model/controller systems can be combined with vector-valued 'adaptive 
critics' (previous critics have been scalar). 

1 INTRODUCTION 

At a given time, an agent with a non-Markovian interface to its environment cannot 
derive an optimal next action by considering its current input only. The algorithm 
described below differs from previous reinforcement algorithms in at least some 
of the following issues: It has a potential for on-line learning and non-Markovian 
environments, it is local in time and in principle it allows arbitrary time lags be­
tween actions and ulterior consequences; it does not care for something like episode­
boundaries, it allows vector-valued reinforcement, it is based on two interacting fully 
recurrent continually running networks, and it tries to construct a full environmental 
model- thus providing complete 'credit assignment paths' into the past. 

We dedicate one or more conventional input units (called pain and pleasure units) 
for the purpose of reporting the actual reinforcement to a fully recurrent control 
network. Pain and pleasure input units have time-invariant desired values. 
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We employ the lID-Algorithm (Robinson and Fallside, 19S7) for training a fully 
recurrent model network to model the relationships between environmental inputs, 
output actions of an agent, and corresponding pain or pleasure. The model network 
(e.g. (Werbos, 19S7)(Jordan, 19S5)(Robinson and Fallside, 19S9)) in turn allows 
the system to compute controller gradients for 'minimizing pain' and 'maximizing 
pleasure'. Since reinforcement gradients depend on 'credit assignment paths' leading 
'backwards through the environment " the model network should not only predict the 
pain and pleasure units but also the other input units. 

The quantity to be minimized by the model network is Et i(Yi(t) - Yipred(t))2, 
where Yi(t) is the activation of the ith input unit at time t,' and Yipred(t) is the 
model's prediction of the activation of the ith input unit at time t. The quantity 
to be minimized by the controller is Et j(Ci - ri(t))2, where ri(t) is the activation 
of the ith pain or pleasure input unit at time t and Cj is its desired activation for 
all times. t ranges over all (discrete) time steps. Weights are changed at each time 
step. This relieves dependence on 'episode boundaries'. Here the assumption is 
that the learning rates are small enough to avoid instabilities (Williams and Zipser, 
19S9). 

There are two versions of the algorithm: the sequential version and the parallel 
version. With the sequential version, the model network is first trained by providing 
it with randomly chosen examples of sequences of interactions between controller 
and environment. Then the model's weights are fixed to their current values, and 
the controller begins to learn. With the parallel version both the controller and the 
model learn concurrently. One advantage of the parallel version is that the model 
network focusses only on those parts of the environmental dynamics with which 
the controller typically is confronted. Another advantage is the applicability to 
changing environments. Some disadvantages of the parallel version are listed next. 

1. Imperfect model networks. The model which is used to compute gradient in­
formation for the controller may be wrong. However, if we assume that the model 
network always finds a zero-point of its error function, then over time we can expect 
the control network to perform gradient descent according to a perfect model of the 
visible parts of the real world. 1.A: The assumption that the model network can 
always find a zero-point of its error function is not valid in the general case. One 
of the reasons is the old problem of local minima, for which this paper does not 
suggest any solutions. 1.B: (Jordan, 19S5) notes that a model network does not 
need to be perfect to allow increasing performance of the control network. 

2. Instabilities. One source of instability could arise if the model network 'forgets' 
information about the environmental dynamics because the activities of the con­
troller push it into a new sub-domain, such that the weights responsible for the old 
well-modeled sub-domain become over-written. 

3. Deadlock. Even if the model's predictions are perfect for all actions executed by 
the controller, this does not imply that the algorithm will always behave as desired. 
Let us assume that the controller enters a local minimum relative to the current state 
of an imperfect model network. This relative minimum might cause the controller 
to execute the same action again and again (in a certain spatio-temporal context), 
while the model does not get a chance to learn something about the consequences 
of alternative actions (this is the deadlock). 
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The sequential version lacks the flavor of on-line learning and is bound to fail as soon 
as the environment changes significantly. We will introduce 'adaptive randomness' 
for the controller outputs to attack problems of the parallel version. 

2 THE ALGORITHM 

The sequential version of the algorithm can be obtained in a straight-forward man­
ner from the description of the parallel version below. At every time step, the 
parallel version is performing essentially the same operations: 

In step 1 of the main loop of the algorithm, actions to be performed in the external 
world are computed. These actions are based on both current and previous inputs 
and outputs. For all new activations, the corresponding derivatives with respect to 
all controller weights are updated. In step 2 actions are executed in the external 
world, and the effects of the current action and/or previous actions may become 
visible. In step 3 the model network sees the last input and the current output of 
the controller at the same time. The model network tries to predict the new input 
without seeing it. Again the relevant gradient information is computed. In step 4 
the model network is updated in order to better predict the input (including pleasure 
and pain) for the controller. The weights of the control network are updated in order 
to minimize the cumulative differences between desired and actual activations of the 
pain and pleasure units. 'Teacher forcing' (Williams and Zipser, 1989) is used in the 
model network (although there is no teacher besides the environment). The partial 
derivatives of the controller's inputs with respect to the controller's weights are 
approximated by the partial derivatives of the corresponding predictions generated 
by the model network. 

Notation (the reader may find it convenient to compare with (Williams and Zipser, 
1989)): G is the set of all non-input units of the control network, A is the set of 
its output units, [ is the set of its 'normal' input units, P is the set of its pain and 
pleasure units, M is the set of all units of the model network, 0 is the set of its 
output units, Ope 0 is the set of all units that predict pain or pleasure, W M is the 
set of variables for the weights of the model network, We is the set of variables for 
the weights of the control network, Yk" ... is the variable for the updated activation 
of the kth unit from MuG u [ UP, Yko l4 is the variable for the last value of Yk" ... , 
Wij is the variable for the weight of the directed connection from unit j to unit i. Oik 
is the Kronecker-delta, which is 1 for i = k and 0 otherwise, P~j" ... is the variable 

which gives the current (approximated) value of 8~~~:w , P~jol4 is the variable which 

gives the last value of prj .... If k E P then Ck is k's desired activation for all times, 
if k E [U P, then kpreJ is the unit from 0 which predicts k. Otc is the learning 
rate for the control network, OtM is the learning rate for the model network. 

I [UP 1=1 0 I, lOp 1=1 P I. Each unit in [UPUA has one forward connection to 
each unit in MUG, each unit in M is connected to each other unit in M, each unit 
in G is connected to each other unit in G. Each weight variable of a connection 
leading to a unit in M is said to belong to W M, each weight variable of a connection 
leading to a unit in G is said to belong to We. For each weight Wij E W M there 
are ~~rvalues for all k EM, for each weight Wij E We there are p~rvalues for all 
k EMU G U [ UP. The parallel version of the algorithm works as follows: 
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INITIALIZATION: 

V Wij E WM U We: Wij - random, V possible k: pfjo'" - o,pt •• ", - 0 . 

V k E MuG: Ykol" - O,Yk".", - O. 

V k E I UP: Set Ykol" according to the current environment, Yk".w - O. 

UNTIL TERMINATION CRITERION IS REACHED: 

1. ViE G : Yi".", - 2:1 . 
1+e - j "ijlljol" 

V Wij E We,k E G: pfj".'" - Yk" ... (l- Yk" .... )(2:,wk'pijo, ,, +bil~Yjo''')' 

V k f: G: Ykol" - Yk ...... , V Wij E We : pfjo'" - pfj" .... 

2. Execute all actions based on activations of units in A. Update the environment. 

ViE I UP: Set Yi".", according to environment. 

S. ViE M : Yi ... ", - 2:1 . 
1+e - j "'ijlljol" 

V Wij E WM U We, k EM: pfj" .... - Yk".w(1- Yk" •• ')(2:, Wk'P~;ol" + bikY;Old)' 

V k EM: Ykol" - Yk".wl V Wi; EWe U WM : pf;o'" - pf;".VI . 

4· V Wi; E WM: Wij - Wi; + O:M 2:kElUP(Yk" ... - YkPredol,,)p:::,;d. 

V Wi; E We: Wi; - Wi; + O:e LkEP(Ck - Yk ..... )p:::,;d. 

V k E I UP: Ykol" - Yk" .... , Ykpredol" - Yk" .... , V Wi; E WM : p:::,;d - 0, 

V Wij E We : pfjo,,, - p:::,;d . 

The algorithm is local in time, but not in space. The computation complexity per 
time step is O( I W M U We II M II M U I U P U A I + I We II G II I U PUG I). In 
what follows we describe some useful extensions of the scheme. 

1. More network ticks than environmental ticks. For highly 'non-linear' environ­
ments the algorithm has to be modified in a trivial manner such that the involved 
networks perform more than one (but not more than three) iterations of step 1 and 
step 3 at each time step. (4-layer-operations in principle can produce an arbitrary 
approximation of any desired mapping.) 

2. Adaptive randomness. Explicit explorative random search capabilities can be 
introduced by probabilistic controller outputs and 'gradient descent through random 
number generators' (Williams, 1988). We adjust both the mean and the variance of 
the controller actions. In the context of the lID algorithm, this works as follows: A 
probabilistic output unit k consists of a conventional unit kJ-l which acts as a mean 
generator and a conventional unit ku which acts as a variance generator. At a given 
time, the probabilistic output Yk" .... is computed by Yk"ew = YklJ ... w +zYkIT".w' where 
Z is distributed e.g. according to the normal distribution. The corresponding pf;new 



.. , 

504 Schmidhu ber 

must then be updated according to the following rule: 

~. +-~!' + Yk new - Yk/J"ew ~~ 
P,) new P,} new Y P,) new' 

ko-new 

A more sophisticated strategy to improve the model network is to introduce 'adap­
tive curiosity and boredom '. The priniciple of adaptive curiosity for model-building 
neural controllers (Schmidhuber, 1990a) says: Spend additional reinforcement 
whenever there is a mismatch between the expectations of the model network and 
reality. 

3. Perfect models. Sometimes one can gain a 'perfect' model by constructing an 
appropriate mathematical description of the environmental dynamics. This saves 
the time needed to train the model. However, additional external knowledge is 
required. For instance, the description of the environment might be in form of 
differential or difference equations. In the context of the algorithm above, this 
means introducing new Pii variables for each Wij E We and each relevant state 
variable 1](t) of the dynamical environment. The new variables serve to accumulate 
the values of ~71(t). This can be done in exactly the same cumulative manner as 

VW' j 

with the activations of the model network above. 

4. Augmenting the algorithm by TD-methods. The following ideas are not limited 
to recurrent nets, but are also relevant for feed-forward controllers in Markovian 
environments. 

It is possible to augment model-building algorithms with an 'adaptive critic' 
method. To simplify the discussion, let us assume that there are no pleasure units, 
just pain units. The algorithm's goal is to minimize cumulative pain. We introduce 
the TD-principle (Sutton, 1988) by changing the error function of the units in Op: 
At a given time t, the contribution of each unit kpred E Op to the model network's 
error is Ykpred(t) - 'YYkpred(t + 1) - Yk(t+ 1), where Yi(t) is the activation of unit i at 
time t, and 0 < 'Y < 1 is a discount factor for avoiding predictions of infinite sums. 
Thus Op is trained to predict the sum of all (discounted) future pain vectors and 
becomes a vector-valued adaptive critic. (This affects the first V-loop in step 4 .) 

The controller's goal is to minimize the absolute value of M's pain predictions. 
Thus, the contribution of time t to the error function of the controller now becomes 
EkpredEOp (Ykpred(t)? This affects the second For-loop in step 4 of the algorithm. 
Note that it is not a state which is evaluated by the adaptive critic component, but 
a combination of a state and an action. This makes the approach similar to (Jordan 
and Jacobs, 1990) . (Schmidhuber, 1990a) shows how a recurrent model/controller 
combination can be used for look-ahead planning without using TD-methods. 

3 EXPERIMENTS 

The following experiments were conducted by the TUM-students Josef Hochreiter 
and Klaus Bergner. See (Schmidhuber, 1990a) and (Schmidhuber, 1990b) for the 
full details . 

1. Evolution of a flip-flop by reinforcement learning. A controller J( had to learn to 
behave like a flip-flop as described in (Williams and Zipser, 1989) . The main diffi-
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culty (the one which makes this different from the supervised approach as described 
in (Williams and Zipser, 1989» was that there was no teacher for K's (probabilistic) 
output units. Instead, the system had to generate alternative outputs in a variety of 
spatio-temporal contexts, and to build a model of the often 'painful' consequences. 
K's only goal information was the activation of a pain input unit whenever it pro­
duced an incorrect output. With 1 C 1= 3, 1 M 1= 4, (Xc = 0.1 and (XM = 1.0 20 
out of 30 test runs with the parallel version required less than 1000000 time steps 
to produce an acceptable solution. 

Why does it take much more time solving the reinforcement flip-flop problem than 
solving the corresponding supervised flip-flop problem? One answer is: With super­
vised learning the controller gradient is given to the system, while with reinforce­
ment learning the gradient has to be discovered by the system. 

2. 'Non-Markovian' pole balancing. A cart pole system was modeled by the same 
differential equations used for a related balancing task which is described in (Ander­
son, 1986). In contrast to previous pole balancing tasks, however, no information 
about temporal derivatives of cart position and pole angle was provided. (Similar 
experiments are mentioned in (Piche, 1990).) 

In our experiments the cart-pole system would not stabilize indefinitely. However, 
significant performance improvement was obtained. The best results were achieved 
by using a 'perfect model' as described above: Before learning, the average time 
until failure was about 25 time steps. Within a few hundred trials one could observe 
trials with more than 1000 time steps balancing time. 'Friendly' initial conditions 
could lead to balancing times of more than 3000 time steps. 

3. 'Markovian' pole balancing with a vector-valued adaptive critic. The adaptive 
critic extension described above does not need a non-Markovian environment to 
demonstrate advantages over previous adaptive critics: A four-dimensional adaptive 
critic was tested on the pole balancing task described in (Anderson, 1986). The 
critic component had four output units for predicting four different kinds of 'pain', 
two for bumps against the two edges of the track and two for pole crashes. 

None of five conducted test runs took more than 750 failures to achieve the first 
trial with more than 30000 time steps. (The longest run reported by (Anderson, 
1986) took about 29000 time steps, more than 7000 failures had to be experienced 
to achieve that result.) 

4 SOME LIMITATIONS OF THE APPROACHES 

1. The recurrent network algorithms are not local in space. 

2. As with all gradient descent algorithms there is the problem of local minima. 
This paper does not offer any solutions to this problem. 

3. More severe limitations of the algorithm are inherent problems of the concepts 
of 'gradient descent through time' and adaptive critics. Neither gradient descent 
nor adaptive critics are practical when there are long time lags between actions 
and ultimate consequences. For this reason, first steps are made in (Schmidhuber, 
1990c) towards adaptive sub-goal generators and adaptive 'causality detectors '. 
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