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A simple architecture and algorithm for analytically guaranteed associa­
tive memory storage of analog patterns, continuous sequences, and chaotic 
attractors in the same network is described. A matrix inversion determines 
network weights, given prototype patterns to be stored. There are N units 
of capacity in an N node network with 3N2 weights. It costs one unit per 
static attractor, two per Fourier component of each sequence, and four per 
chaotic attractor. There are no spurious attractors, and there is a Lia­
punov function in a special coordinate system which governs the approach 
of transient states to stored trajectories. Unsupervised or supervised incre­
mental learning algorithms for pattern classification, such as competitive 
learning or bootstrap Widrow-Hoff can easily be implemented. The archi­
tecture can be "folded" into a recurrent network with higher order weights 
that can be used as a model of cortex that stores oscillatory and chaotic 
attractors by a Hebb rule. Hierarchical sensory-motor control networks 
may be constructed of interconnected "cortical patches" of these network 
modules. Network performance is being investigated by application to the 
problem of real time handwritten digit recognition. 

1 Introduction 

We introduce here a "projection network" which is a new network for implementa­
tion of the "normal form projection algorithm" discussed in [Bai89, Bai90b]. The 
autoassociative case of this network is formally equivalent to the previous higher 
order network realization used as a biological model [Bai90a]. It has 3N2 weights 
instead of N2 + N 4 , and is more useful for engineering applications. All the math­
ematical results proved for the projection algorithm in that case carryover to this 

91 



92 Baird and Eeckman 

INPUT 

p- 1 matrix 

A matrix 

Dynamic 
winner-take-all 

Network 

P matrix 

OUTPUT 

X' 1 
X' 

n Network Coordinates 

Normal Form: 
• '"' 2 Vi = aVi - Vi wj aijVj 

x=Pii 

Network Coordinates 

Figure 1: Projection Network - 3N2 weights. The A matrix determines a k-winner­
take-all net - programs attractors, basins of attraction, and rates of convergence. 
The columns of P contain the ouptut patterns associated to these attractors. The 
rows of p-l determine category centroids 

new architecture, but more general versions can be trained and applied in novel 
ways. The discussion here will be informal, since space prohibits technical detail 
and proofs may be found in the references above. 

A key feature of a net constructed by this algorithm is that the underlying dynamics 
is explicitly isomorphic to any of a class of standard, well understood nonlinear 
dynamical systems - a "normal form" [GH83]. This system is chosen in advance, 
independent of both the patterns to be stored and the learning algorithm to be 
used. This control over the dynamics permits the design of important aspects of 
the network dynamics independent of the particular patterns to be stored. Stability, 
basin geometry, and rates of convergence to attractors can be programmed in the 
standard dynamical system. 

Here we use the normal form for the Hopf bifurcation [GH83] as a simple recurrent 
competitive k-winner-take-all network with a cubic nonlinearity. This network lies 
in what might considered diagonalized or "overlap" or "memory coordinates" (one 
memory per k nodes). For temporal patterns, these nodes come in complex conju­
gate pairs which supply Fourier components for trajectories to be learned. Chaotic 
dynamics may be created by specific programming of the interaction of two pairs 
of these nodes. 

Learning of desired spatial or spatia-temporal patterns is done by projecting sets of 
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these nodes into network coordinates( the standard basis) using the desired vectors 
as corresponding columns of a transformation matrix P. In previous work, the 
differential equations of the recurrent network itself are linearly transformed or 
"projected" , leading to new recurrent network equations with higher order weights 
corresponding to the cubic terms of the recurrent network. 

2 The Projection Network 

In the projection net for autoassociation, this algebraic projection operation into 
and out of memory coordinates is done explicitly by a set of weights in two feed­
forward linear networks characterized by weight matrices p-l and P. These map 
inputs into and out of the nodes of the recurrent dynamical network in memory 
coordinates sandwiched between them. This kind of network, with explicit input 
and output projection maps that are inverses, may be considered an "unfolded" 
version of the purely recurrent networks described in the references above. 

This network is shown in figure 1. Input pattern vectors i' are applied as pulses 
which project onto each vector of weights (row of the p-l matrix) on the input 
to each unit i of the dynamic network to establish an activation level Vi which 
determines the initial condition for the relaxation dynamics of this network. The 
recurrent weight matrix A of the dynamic network can be chosen so that the unit 
or predefined subspace of units which recieves the largest projection of the input 
will converge to some state of activity, static or dynamic, while all other units are 
supressed to zero activity. 

The evolution of the activity in these memory coordinates appears in the original 
network coordinates at the output terminals as a spatia-temporal pattern which 
may be fully distributed accross all nodes. Here the state vector of the dynamic 
network has been transformed by the P matrix back into the coordinates in which 
the input was first applied. At the attractor v* in memory coordinates, only a lin­
ear combination of the columns of the P weight matrix multiplied by the winning 
nonzero modes of the dynamic net constitute the network representation of the out­
put of the system. Thus the attractor retrieved in memory coordinates reconstructs 
its learned distributed representation i* through the corresponding columns of the 
output matrix P, e.g. p-1i' = v, v -+ ir, Pir = i* . 

For the special case of content addressable memory or autoassociation, which we 
have been describing here, the actual patterns to be learned form the columns 
of the output weight matrix P, and the input matrix is its inverse p-l. These 
are the networks that can be "folded" into higher order recurrent networks. For 
orthonormal patterns, the inverse is the transpose of this output matrix of memories, 
p-l = pT, and no computation of p-l is required to store or change memories -
just plug the desired patterns into appropriate rows and columns of P and pT. 

In the autoassociative network, the input space, output space and normal form 
state space are each of dimension N. The input and output linear maps require 
N2 weights each, while the normal form coefficients determine another N 2 weights. 
Thus the net needs only 3N2 weights, instead of the N 2 + N 4 weights required by 
the folded recurrent network. The 2N2 input and output weights could be stored 
off-chip in a conventional memory, and the fixed weights of the dynamic normal 
form network could be implemented in VLSI for fast analog relaxation. 
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3 Learning Extensions 

More generally, for a heteroassociative net (i. e., a net designed to perform a map 
from input space to possibly different output space) the linear input and output 
maps need not be inverses, and may be noninvertible. They may be found by any 
linear map learning technique such as Widrow-Hoff or by finding pseudoinverses. 

Learning of all desired memories may be instantaneous, when they are known in 
advance, or may evolve by many possible incremental methods, supervised or un­
supervised. The standard competitive learning algorithm where the input weight 
vector attached to the winning memory node is moved toward the input pattern 
can be employed. We can also decrease the tendency to choose the most frequently 
selected node, by adjusting paratmeters in the normal form equations, to realize the 
more effective frequency selective competitive learning algorithm [AKCM90]. Su­
pervised algorithms like bootstrap Widrow Hoff may be implemented as well, where 
a desired output category is known. The weight vector of the winning normal form 
node is updated by the competitive rule, if it is the right category for that input, 
but moved away from the input vector, if it is not the desired category, and the 
weight vector of the desired node is moved toward the input. 

Thus the input map can be optimized for clustering and classification by these 
algorithms, as the weight vectors (row vectors of the input matrix) approach the 
centroids of the clusters in the input environment. The output weight matrix may 
then be constructed with any desired output pattern vectors in appropriate columns 
to place the attractors corresponding to these categories anywhere in the state space 
in network coordinates that is required to achieve a desired heteroassociation. 

If either the input or the output matrix is learned, and the other chosen to be its 
inverse, then these competitive nets can be folded into oscillating biological versions, 
to see what the competive learning algorithms correspond to there. Now either the 
rows of the input matrix may be optimized for recognition, or the columns of the 
output matrix may be chosen to place attractors, but not both. We hope to be able 
to derive a kind of Hebb rule in the biological network, using the unfolded form of 
the network, which we can prove will accomplish competitive learning. Thus the 
work on engineering applications feeds back on the understanding of the biological 
systems. 

4 Programming the Normal Form Network 

The key to the power of the projection algorithm to program these systems lies in 
the freedom to chose a well understood normal form for the dynamics, indepen­
dent of the patterns to be learned. The Hopf normal form used here, (in Cartesian 

coordinates) Vi = 2:;=1 hjVj - Vi 2:;=1 AijVJ is especially easy to work with 
for programming periodic attractors, but handles fixed points as well. J is a ma­
trix with real eigenvalues for determining static attractors, or complex conjugate 
eignevalue pairs in blocks along the diagonal for periodic attractors. The real parts 
are positive, and cause initial states to move away from the origin, until the com­
petitive (negative) cubic terms dominate at some distance, and cause the flow to 
be inward from all points beyond. The off-diagonal cubic terms cause competition 
between directions of flow within a spherical middle region and thus create multiple 
attractors and basins. The larger the eigenvalues in J and off-diagonal weights in 
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A, the faster the convergence to at tractors in this region. 

It is easy to choose blocks of coupling along the diagonal of the A matrix to produce 
different kinds of attractors, static, periodic, or chaotic, in different coordinate 
subspaces of the network. The sizes of the subspaces can be programmed by the 
sizes of the blocks. The basin of attraction of an attractor determined within 
a subspace is guaranteed to contain the subspace [Bai90b]. Thus basins can be 
programmed, and "spurious" attractors can be ruled out when all subspaces have 
been included in a programmed block. 

This can be accomplished simply by choosing the A matrix entries outside the 
blocks on the diagonal (which determine coupling of variables within a subspace) to 
be greater (more negative) than those within the blocks. The principle is that this 
makes the subspaces defined by the blocks compete exhaustively, since intersubspace 
competition is greater than subspace self-damping. Within the middle region, the 
flow is forced to converge laterally to enter the subspaces programmed by the blocks. 

An simple example is a matrix of the form, 

d 
d 

A= 

(g) 

(g) 

d c 
d c 
c d 
c d 

where 0 < c < d < g. There is a static attractor on each axis (in each one 
dimensional subspace) corresponding to the first two entries on the diagonal, by 
the agrument above. In the first two dimensional subspace block there is a single 
fixed point in the interior of the subspace on the main diagonal, because the off­
diagonal entries within the block are symmetric and less negative than those on the 
diagonal. The components do not compete, but rather combine. Nevertheless, the 
flow from outside is into the subspace, because the entries outside the subspace are 
more negative than those within it. 

The last subspace contains entries appropriate to guarantee the stability of a peri­
odic attractor with two frequencies (Fourier components) chosen in the J matrix. 
The doubling of the entries is because these components come in complex conjugate 
pairs (in the J matrix blocks) which get identical A matrix coupling. Again, these 
pairs are combined by the lesser off-diagonal coupling within the block to form a 
single limit cycle attractor. A large subspace can store a complicated continuous 
periodic spatia-temporal sequence with many component frequencies . 

The discrete Fourier transform of a set of samples of such a sequence in space and 
time can be input directly to the P matrix as a set of complex columns corresponding 
to the frequencies in J and the subspace programmed in A. N /2 total DFT samples 
of N dimensional time varying spatial vectors may be placed in the P matrix, and 
parsed by the A matrix into M < N /2 separate sequences as desired, with separate 
basins of attraction guaranteed [Bai90b]. For a symmetric A matrix, there is a 
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Liapunov function, in the amplitude equations of a polar coordinate version of the 
normal form, which governs the approach of initial states to stored trajectories. 

5 Chaotic Attractors 

Chaotic attractors may be created in this normal form, with sigmoid nonlinearities 
added to the right hand side, Vi -+ tanh( vd. The sigmoids yield a spectrum of higher 
order terms that break the phase shift symmetry of the system. Two oscillatory 
pairs of nodes like those programmed in the block above can then be programmed 
to interact chaotically. In our simulations, for example, if we set the upper block of 
d entries to -1, and the lower to 1, and replace the upper c entries with 4.0, and the 
lower with -0.4, we get a chaotic attractor of dimension less than four, but greater 
than three. 

This is "weak" or "phase coherent" chaos that is still nearly periodic. It is created 
by the broken symmetry, when a homo clinic tangle occurs to break up an invariant 
3-torus in the flow [G H83]. This is the Ruelle-Takens route to chaos and has been 
observed in Taylor-Couette flow when both cylnders are rotated. We believe that 
sets of Lorentz equations in three dimensional subspace blocks could be used in a 
projection network as well. Experiments of Freeman, however, have suggested that 
chaotic attractors of the above dimension occur in the olfactory system [Fre87]. 
These might most naturally occur by the interaction of oscillatory modes. 

In the projection network or its folded biological version, these chaotic attractors 
have a basin of attraction in the N dimensional state space that constitues a cat­
egory, just like any other attractor in this system. They are, however, "fuzzy" 
at tr actors , and there may be computational advantages to the basins of attraction 
(categories) produced by chaotic attractors, or to the effects their outputs have 
as fuzzy inputs to other network modules. The particular N dimensional spatia­
temporal patterns learned for the four components of these chaotically paired modes 
may be considered a coordinate specific "encoding" of the strange attractor, which 
may constitute a recognizable input to another network, if it falls within some 
learned basin of attraction. While the details of the trajectory of a strange attrac­
tor in any real physical continuous dynamical system are lost in the noise, there 
is still a particular statistical structure to the attractor which is a recognizable 
"sign at ure" . 

6 Applications 

Handwritten characters have a natural translation invariant analog representation 
in terms of a sequence of angles that parametrize the pencil trajectory, and their 
classification can be taken as a static or temporal pattern recognition problem. We 
have constructed a trainable on-line system to which anyone may submit input 
by mouse or digitizing pad, and observe the performance of the system for them­
selves, in immediate comparison to their own internal recognition response. The 
performance of networks with static, periodic, and chaotic attractors may be tested 
simultaneously, and we are presently assessing the results. 

These networks can be combined into a hierarchical architecture of interconnected 
modules. The larger network itself can then be viewed as a projection network, 
transformed into biological versions, and its behavior analysed with the same tools 
that were used to design the modules. The modules can model "patches" of cortex 



CAM Storage of Analog Patterns and Continuous Sequences with 3N2 Weights 97 

interconnected to form sensory-motor control networks. These can be configured to 
yield autonomous adaptive "organisms" which learn useful sequences of behaviors 
by reinforcement from their environment. 

The A matrix for a network like that above may itself become a sub-block in the A 
matrix of a larger network. The overall network is then a projection network with 
zero elements in off-diagonal A matrix entries outside blocks that define multiple 
attractors for the submodules. The modules neither compete nor combine states, 
in the absence of A matrix coupling between them, but take states independently 
based on their inputs to each other through the weights in the matrix J (which 
here describes full coupling). The modules learn connection weights Jij between 
themselves which will cause the system to evolve under a clocked "machine cycle" 
by a sequence of transitions of attractors (static, oscillatory, or chaotic) within 
the modules, much as a digital computer evolves by transitions of its binary flip­
flop states. This entire network may be folded to use more fault tolerant and 
biologically plausible distributed representations, without disrupting the identity of 
the subnetworks. 

Supervised learning by recurrent back propagation or reinforcement can be used to 
train the connections between modules. When the inputs from one module to the 
next are given as impulses that establish initial conditions, the dynamical behavior 
of a module is described exactly by the projection theorem [Bai89]. Possible ap­
plications include problems such as system identification and control, robotic path 
planning, gramatical inference, and variable-binding by phaselocking in oscillatory 
semantic networks. 

Acknowledgements: 

Supported by AFOSR-87-0317, and a grant from LLNL. It is a pleasure to acknuwl­
edge the support of Walter Freeman and invaluable assistance of Morris Hirsch. 

References 

[AKCM90] C. Ahalt, A. Krishnamurthy, P. Chen, and D. Melton. Competitive 
learning algorithms for vector quantization. Neural Networks, 3:277-
290,1990. 

[Bai89] 

[Bai90a] 

[Bai90b] 

[Fre87] 

[GH83] 

B Baird. A bifurcation theory approach to vector field programming 
for periodic attractors. In Proc. Int. Joint Conf on Neural Networks, 
Wash. D.C., pages 1:381-388, June 1989. 

B. Baird. Bifurcation and learning in network models of oscillating 
cortex. In S. Forest, editor, Emergent Computation, pages 365-384. 
North Holland, 1990. also in Physica D, 42. 

B. Baird. A learning rule for cam storage of continuous periodic se­
quences. In Proc. Int. Joint Conf on Neural Networks, San Diego, 
pages 3: 493-498, June 1990. 

W.J. Freeman. Simulation of chaotic eeg patterns with a dynamic model 
of the olfactory system. Biological Cybernetics, 56:139, 1987. 

J. Guckenheimer and D. Holmes. Nonlinear Oscillations, Dynamical 
Systems, and Bifurcations of Vector Fields. Springer, New York, 1983. 


