
An Analog VLSI Splining Network

Daniel B. Schwartz and Vijay K. Samalam
GTE Laboratories, Inc.

40 Sylvan Rd.
Waltham, MA 02254

Abstract

We have produced a VLSI circuit capable of learning to approximate ar­
bitrary smooth of a single variable using a technique closely related to
splines. The circuit effectively has 512 knots space on a uniform grid and
has full support for learning. The circuit also can be used to approximate
multi-variable functions as sum of splines.

An interesting, and as of yet, nearly untapped set of applications for VLSI imple­
mentation of neural network learning systems can be found in adaptive control and
non-linear signal processing. In most such applications, the learning task consists
of approximating a real function of a small number of continuous variables from
discrete data points. Special purpose hardware is especially interesting for applica­
tions of this type since they generally require real time on-line learning and there
can be stiff constraints on the power budget and size of the hardware. Frequently,
the already difficult learning problem is made more complex by the non-stationary
nature of the underlying process.

Conventional feed-forward networks with sigmoidal units are clearly inappropriate
for applications of this type. Although they have exhibited remarkable performance
in some types of time series prediction problems (for example, Wiegend, 1990 and
Atlas, 1990), their learning rates in general are too slow for on-line learning. On-line
performance can be improved most easily by using networks with more constrained
architecture, effectively making the learning problem easier by giving the network a
hint about the learning task. Networks that build local representations of the data,
such as radial basis functions, are excellent candidates for these type of problems.
One great advantage of such networks is that they require only a single layer of
units. If the position and width of the units are fixed, the learning problem is linear

1008

An Analog VLSI Splining Network 1009

in the coefficients and local. By local we mean the computation of a weight change
requires only information that is locally available to each weight, a highly desirable
property for VLSI implementation. If the learning algorithm is allowed to adjust
both the position and width of the units then many of the advantages of locally
tuned units are lost.

A number of techniques have been proposed for the determination of the width
and placement of the units. One of the most direct is to center a unit at every
data point and to adjust the widths of the units so the receptive fields overlap
with those of neighboring data points (B room head , 1989). The proliferation of
units can be limited by using unsupervised clustering techniques to clump the data
followed by the allocation of units to fit the clumps (Moody, 1989). Others have
advocated assigning new units only when the error on a new data point is larger than
a threshold and otherwise making small adjustments in the weights and parameters
of the existing units (Platt, 1990). All of these methods suffer from the common
problem of requiring an indeterminate quantity of resources in contrast with the
fixed resources available from most VLSI circuits. Even worse, when used with
non-stationary processes a mechanism is needed to deallocate units as well as to
allocate them. The resource allocation/deallocation problem is a serious barrier to
implementing these algorithms as autonomous VLSI microsystems.

A Splining Network

To avoid the resource allocation problem we propose a network that uses all of
its weights and units regardless of the problem. We avoid over parameterization
of the training data by building constraints on smoothness into the network, thus
reducing the number of degrees of freedom available to the training process. In
its simplest guise, the network approximates arbitrary I-d smooth functions with a
linear superposition of locally tuned units spaced on a uniform grid,

g(z) = LWifC7(z - i~z)
i

(1)

where u is the radius of the unit's receptive field and the Wi are the weights. fC7 is a
bump of width u such as a gaussian or a cubic spline basis function. Mathematically
the network is closely related to function approximation using B-splines (Lancaster,
1986) with uniformly spaced knots. However, in B-spline interpolation the overlap
of the basis functions is normally determined by the degree of the spline whereas
we use the degree of overlap as a free parameter to constrain the smoothness of
the network's output. As mentioned earlier, the network is linear in its weights
so gradient descent with a quadratic cost function (LMS) is an effective training
procedure.

The weights needed for this network can easily be implemented in CMOS with an
array of transconductance amplifiers. The amplifiers are wired as voltage followers
with their outputs tied together and the weights are represented by voltages lti
at the non-inverting inputs of the amplifiers. If the outputs of the locally tuned
units are represented by unipolar currents Ii these currents can be used to bias the

1010 Schwartz and Samalam

transconductance amplifiers and the result is (Mead,1989)

t7 _ Ei IiYi
You' - ~

L"i Ii

provided that care is taken to control the non-linearities of the amplifiers. However,
while the weights have a simple implementation in analog VLSI circuitry, the input
units du not. A number of circuits exist whose transfer characteristics can be shaped
to be a suitable bump but none of those known to the authors allow the width of
the bump to be adjusted over a wide range without the use of resistors.

Generating the Receptive Fields

Input units with tunable receptive fields can be generated quite efficiently by break­
ing them up into two layers of circuitry as shown in figure 1. The input layer place
encodes the input signal - i.e. only one or perhaps a small cluster of units is active
at a time. The output of the place encoding units either injects or controls the

output

Input

weight

spreading
layer

place
encoding

Figure 1: An architecture that allows the width and shape of the receptive fields to
be varied over a wide range. The elements of the 'spreading layer' are passive and
can sink current to ground.

injection of current into the laterally connected spreading layer. The elements in
the spreading layer all contain ground terminals and the current sunk by each one
determines the bias current applied to the associated weight. Clearly, the distribu­
tion of currents flowing to ground through the spreading layer form a smooth bump
such that when excitation is applied to tap j of the spreading layer,

Ii = 10 1(1(; - j}

where I(I(;} is the bump called for by equation 1. In our earliest realizations of
this network the input layer was a crude flash A-to-D converter and the input
to the circuit was analog. In the current generation the input is digital with the
place encoding performed by a conventional address decoder. If desired, input
quantization can be avoided by using a layer of amplifiers that generate smooth
bumps of fixed width to generate the input place encoding.

An Analog VLSI Splining Network 1011

The simplest candidate to implement the spreading layer in conventional CMOS
is a set of diode connected n-channel transistors laterally connected by n-channel
pass transistors. The gate voltages of the diode connected transistors determine
the bias currents Ii of the weights. Ignoring the body effect and assuming weak
inversion in the current sink, this type of networks tends to gives bumps with rather
sharp peaks, Ii ~ Ej Ioe-aul , where Iii is the distance from the point where the
excitation is applied. Figure 2 shows a more sophisticated version of this circuit
in which the output of the place encoding units applies excitation to the spreading
network through a p-channel transistor. The shape of the bumps can be softened by

to weights

from place encoder

bias
voltages

Figure 2: A schematic of a section of the spreading layer. Roughly speaking, the
n-channel pass transistor controls the extent of the tails of the bumps and the
p-channel pass transistor and the cascode transistor control its width.

limiting the amount of current drawn by the current sinks with an n-channel cascode
transistor in series with the current sink. Some experimental results for this type of
circuit are shown in figure 3a. More control can be obtained by using complementary
pass transistors. The use of p-channel pass transistors alone unexpectedly results
in bumps that are nearly square (figure 3b). These can be smoothed by using a
using both flavors of pass transistor simultaneously (figure 3c).

The Weights

As described earlier, the implementation of the output weights is based on the
computation of means by the well known follower-aggregation circuit. With typical
transconductance amplifiers, this averaging is linear only when the voltages being
averaged are distributed over a voltage range of no more than a few time UQ = kT/e
in weak inversion. In the circuits described here the linear range has been widened
to nearly a volt by reducing the transconductance of the readout amplifiers through
the combination of low width to length ratio input transistors and relatively large
tail currents.

The weights Vi are stored on MOS capacitors and are programmed by the gated
transconductance amplifier shown in figure 4. Since this amplifier computes the

1012 Schwartz and Samalam

c
CD
t:
:s o

I
I , , , , , , .,

,: I
d.1 ,: :,
.i 1,
,! : I
,: :.,
I! \.
,: \ \
,: : \

" •... l ,," -.~ ... ~ ' ::-.::..--
o 50 100 150 200 250

b
, II

II
I:
I,
I
I
I
I
I
I
I
I
I
I ! '-

o 10 20 30 40 50 o 10 20 30 40 50

Tap Number

Figure 3: Experimental measurements of the receptive field shapes obtained from
different types of networks. (a) n-channel transistors for several gate voltages. (b)
p-channel transistors for several gate voltages. (c) Both n-channel and p-channel
pass transistors.

exdmkm >-~+----------+--------~

Figure 4: Schematic of an output weight including the circuitry to generate weight
updates. To minimize leakage and charge injection simultaneously, the pass tran­
sistors used to gate the weight change amplifier are of minimum size and a separate
transistor turns off the output transistors of the amplifier.

difference between the target voltage and the actual output of the network, the
learning rule is just LMS,

where C is the capacitance of the storage capacitor and T is the duration of weight
changes. The transconductance gi of the weight change amplifier is determined by
the strength of excitation current from the spreading layer, gi oc Ii in weak inversion.
Since the weight changes are governed by strengths of the excitation currents from
the spreading layer, clusters of weights are changed at a time. This enhances the
fault tolerance of the circuit since the group of weights surrounding a bad one can
compensate for it.

An Analog VLSI Splining Network 1013

Experimental Evaluation

Several different chips have been fabricated in 21' p-well CMOS and tested to evalu­
ate the principles described here. The most recent of these has 512 weights arranged
in a 64 x 8 matrix connected to form a one dimensional array. The active area of
this chip is 4.1mm x 3.7mm. The input signal is digital with the place encoding
performed by a conventional address decoder. To maximize the flexibility of the
chip, the excitation is applied to the spreading layer by a register located in each
cell. By writing to multiple registers between resets, the spreading layer can be ex­
cited at multiple points simultaneously. This feature allows the chip to be treated
as a single I-dimensional spline with 512 weights or, for example, as the sum of
four distinct I-dimensional splines each made up of 128 weights. One of the most
noticeable virtues of this design is the simplicity of the layout due to the absence
of any dear distinction between 'weights' and 'units'. The primitive cell consists of
a register, a piece of the spreading network, a weight change amplifier, a storage
capacitor and output amplifier. All but a tiny fraction of the chip is a tiling of
this primitive cell. The excess circuitry consists of the address decoders, a timing
circuit to control the duration of weight changes and some biasing circuitry for the
spreading layer.

To execute LMS learning, the user need only provide a sequence of target voltages
and a current proportional to the duration of weight changes. Under reasonable
operating conditions a weight updates cycle takes less than 11'8 implying a weight
change rate of 5 x 108 connections/second. The response of the chip to a single
weight change after initialization is shown in in figure 5a. One feature of this plot
is striking - even though the distribution of offsets in the individual amplifiers has
a variance of 13mV, the ripple in the output of the chip is about a ImV. For some
computations, it appears the limiting factor on the accuracy of the chip is the rate
of weight decay, about IOmV/s.

As a more strenuous test of the functionality of the chip we trained it to predict
chaotic time series generated by the well know logistic equation,

Xt+l = 4axt{1 - x,), a < 1.
Some experimental results for the mean prediction error are shown in figure 5b.
In these experiments, a mean prediction error of 3% is achieved, which is well
above the intrinsic accuracy of the circuit. A detailed examination of the error
rate as a function of the size and shape of the bumps indicates that the problem
lies in the long tails exhibited by the spreading layer when the n-channel pass
transistors are turned on. This tail falls off very slowly due to the body effect.
One remedy to this problem is to actively bias the gates of the n-channel pass
transistors to be a programmed offset above their source voltages (Mead, 1989). A
simpler solution is to subtract a fixed current from each of the bias current defined
by the spreading layer. This solution costs a mere 4 transistors and has the added
benefit of guaranteeing that the bumps will always have a finite support.

Conclusion

We have demonstrated that neural network learning can be efficiently mapped onto
analog VLSI provided that the network architecture and training procedure are

1014 Schwartz and Samalam

co
ci b

II)

N II) ... ci
0
t::
Q) ~
c:: ci

(')

N ~ (')

'2 ci

.....
N

a. "! c:: as 0
Q)

E
ci

~
0
ci

0 1 0 20 30 40 50 60 70 0 200 400 600 800 1000

input value time

Figure 5: Some experimental results from a splining circuit. (a) The response of
the circuit to learning one data point after initialization of the weights to a constant
value. (b) Experimental mean prediction while learning a chaotic time series.

tailored to match the constraints imposed by VLSI. Besides the computational
speed and low power consumption (300pA) that follow directly from this mapping
onto VLSI, the circuit also demonstrates intrinsic fault tolerance to defects in the
weights.

Acknowledgements

This work was initially inspired by a discussion with A. G. Barto and R. S. Sutton.
A discussion with J. Moody was also helpful.

References

[1] L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park, M. EI­
Sharkawi, and R. J. Marks II. A performance comparison of trained multi-layer
perceptrons and trained classification trees. IEEE Proceedings, 1990.

[2] D. S. Broomhead and D. Lowe. Multivariable function interpolation and adap­
tive networks. Complex Systems, 2:321-355, 1988.

[3] P. Lancaster and K. Salkauskas. Curve and Surface Fitting. Academic Press,
1986.

[4] C. Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

[5] J. Moody and C.J. Darken. Fast learning in networks oflocally-tuned processing
units. Neural Computation, 1(2), 1989.

[6] J. Platt. A resource-allocating neural network for function interpolation. In
Richard P. Lippman, John Moody, and David S. Touretzky, editors, Advances
in Neural Information Processing Systems 9, 1991.

[7] A. S. Weigend, , B. A. Huberman, and D. E. Rummlehart. Predicting the future
: A connectionist approach. International Journal of Neural Systems, 3, 1990.

