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Abstract 

We have produced a VLSI circuit capable of learning to approximate ar­
bitrary smooth of a single variable using a technique closely related to 
splines. The circuit effectively has 512 knots space on a uniform grid and 
has full support for learning. The circuit also can be used to approximate 
multi-variable functions as sum of splines. 

An interesting, and as of yet, nearly untapped set of applications for VLSI imple­
mentation of neural network learning systems can be found in adaptive control and 
non-linear signal processing. In most such applications, the learning task consists 
of approximating a real function of a small number of continuous variables from 
discrete data points. Special purpose hardware is especially interesting for applica­
tions of this type since they generally require real time on-line learning and there 
can be stiff constraints on the power budget and size of the hardware. Frequently, 
the already difficult learning problem is made more complex by the non-stationary 
nature of the underlying process. 

Conventional feed-forward networks with sigmoidal units are clearly inappropriate 
for applications of this type. Although they have exhibited remarkable performance 
in some types of time series prediction problems (for example, Wiegend, 1990 and 
Atlas, 1990), their learning rates in general are too slow for on-line learning. On-line 
performance can be improved most easily by using networks with more constrained 
architecture, effectively making the learning problem easier by giving the network a 
hint about the learning task. Networks that build local representations of the data, 
such as radial basis functions, are excellent candidates for these type of problems. 
One great advantage of such networks is that they require only a single layer of 
units. If the position and width of the units are fixed, the learning problem is linear 
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in the coefficients and local. By local we mean the computation of a weight change 
requires only information that is locally available to each weight, a highly desirable 
property for VLSI implementation. If the learning algorithm is allowed to adjust 
both the position and width of the units then many of the advantages of locally 
tuned units are lost. 

A number of techniques have been proposed for the determination of the width 
and placement of the units. One of the most direct is to center a unit at every 
data point and to adjust the widths of the units so the receptive fields overlap 
with those of neighboring data points ( B room head , 1989). The proliferation of 
units can be limited by using unsupervised clustering techniques to clump the data 
followed by the allocation of units to fit the clumps (Moody, 1989). Others have 
advocated assigning new units only when the error on a new data point is larger than 
a threshold and otherwise making small adjustments in the weights and parameters 
of the existing units (Platt, 1990). All of these methods suffer from the common 
problem of requiring an indeterminate quantity of resources in contrast with the 
fixed resources available from most VLSI circuits. Even worse, when used with 
non-stationary processes a mechanism is needed to deallocate units as well as to 
allocate them. The resource allocation/deallocation problem is a serious barrier to 
implementing these algorithms as autonomous VLSI microsystems. 

A Splining Network 

To avoid the resource allocation problem we propose a network that uses all of 
its weights and units regardless of the problem. We avoid over parameterization 
of the training data by building constraints on smoothness into the network, thus 
reducing the number of degrees of freedom available to the training process. In 
its simplest guise, the network approximates arbitrary I-d smooth functions with a 
linear superposition of locally tuned units spaced on a uniform grid, 

g(z) = LWifC7(z - i~z) 
i 

(1) 

where u is the radius of the unit's receptive field and the Wi are the weights. fC7 is a 
bump of width u such as a gaussian or a cubic spline basis function. Mathematically 
the network is closely related to function approximation using B-splines (Lancaster, 
1986) with uniformly spaced knots. However, in B-spline interpolation the overlap 
of the basis functions is normally determined by the degree of the spline whereas 
we use the degree of overlap as a free parameter to constrain the smoothness of 
the network's output. As mentioned earlier, the network is linear in its weights 
so gradient descent with a quadratic cost function (LMS) is an effective training 
procedure. 

The weights needed for this network can easily be implemented in CMOS with an 
array of transconductance amplifiers. The amplifiers are wired as voltage followers 
with their outputs tied together and the weights are represented by voltages lti 
at the non-inverting inputs of the amplifiers. If the outputs of the locally tuned 
units are represented by unipolar currents Ii these currents can be used to bias the 
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transconductance amplifiers and the result is (Mead,1989) 

t7 _ Ei IiYi 
You' - ~ 

L"i Ii 

provided that care is taken to control the non-linearities of the amplifiers. However, 
while the weights have a simple implementation in analog VLSI circuitry, the input 
units du not. A number of circuits exist whose transfer characteristics can be shaped 
to be a suitable bump but none of those known to the authors allow the width of 
the bump to be adjusted over a wide range without the use of resistors. 

Generating the Receptive Fields 

Input units with tunable receptive fields can be generated quite efficiently by break­
ing them up into two layers of circuitry as shown in figure 1. The input layer place 
encodes the input signal - i.e. only one or perhaps a small cluster of units is active 
at a time. The output of the place encoding units either injects or controls the 
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Figure 1: An architecture that allows the width and shape of the receptive fields to 
be varied over a wide range. The elements of the 'spreading layer' are passive and 
can sink current to ground. 

injection of current into the laterally connected spreading layer. The elements in 
the spreading layer all contain ground terminals and the current sunk by each one 
determines the bias current applied to the associated weight. Clearly, the distribu­
tion of currents flowing to ground through the spreading layer form a smooth bump 
such that when excitation is applied to tap j of the spreading layer, 

Ii = 10 1(1(; - j} 

where I(I(;} is the bump called for by equation 1. In our earliest realizations of 
this network the input layer was a crude flash A-to-D converter and the input 
to the circuit was analog. In the current generation the input is digital with the 
place encoding performed by a conventional address decoder. If desired, input 
quantization can be avoided by using a layer of amplifiers that generate smooth 
bumps of fixed width to generate the input place encoding. 
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The simplest candidate to implement the spreading layer in conventional CMOS 
is a set of diode connected n-channel transistors laterally connected by n-channel 
pass transistors. The gate voltages of the diode connected transistors determine 
the bias currents Ii of the weights. Ignoring the body effect and assuming weak 
inversion in the current sink, this type of networks tends to gives bumps with rather 
sharp peaks, Ii ~ Ej Ioe-aul , where Iii is the distance from the point where the 
excitation is applied. Figure 2 shows a more sophisticated version of this circuit 
in which the output of the place encoding units applies excitation to the spreading 
network through a p-channel transistor. The shape of the bumps can be softened by 
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Figure 2: A schematic of a section of the spreading layer. Roughly speaking, the 
n-channel pass transistor controls the extent of the tails of the bumps and the 
p-channel pass transistor and the cascode transistor control its width. 

limiting the amount of current drawn by the current sinks with an n-channel cascode 
transistor in series with the current sink. Some experimental results for this type of 
circuit are shown in figure 3a. More control can be obtained by using complementary 
pass transistors. The use of p-channel pass transistors alone unexpectedly results 
in bumps that are nearly square (figure 3b). These can be smoothed by using a 
using both flavors of pass transistor simultaneously (figure 3c). 

The Weights 

As described earlier, the implementation of the output weights is based on the 
computation of means by the well known follower-aggregation circuit. With typical 
transconductance amplifiers, this averaging is linear only when the voltages being 
averaged are distributed over a voltage range of no more than a few time UQ = kT/e 
in weak inversion. In the circuits described here the linear range has been widened 
to nearly a volt by reducing the transconductance of the readout amplifiers through 
the combination of low width to length ratio input transistors and relatively large 
tail currents. 

The weights Vi are stored on MOS capacitors and are programmed by the gated 
transconductance amplifier shown in figure 4. Since this amplifier computes the 
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Figure 3: Experimental measurements of the receptive field shapes obtained from 
different types of networks. (a) n-channel transistors for several gate voltages. (b) 
p-channel transistors for several gate voltages. ( c) Both n-channel and p-channel 
pass transistors. 
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Figure 4: Schematic of an output weight including the circuitry to generate weight 
updates. To minimize leakage and charge injection simultaneously, the pass tran­
sistors used to gate the weight change amplifier are of minimum size and a separate 
transistor turns off the output transistors of the amplifier. 

difference between the target voltage and the actual output of the network, the 
learning rule is just LMS, 

where C is the capacitance of the storage capacitor and T is the duration of weight 
changes. The transconductance gi of the weight change amplifier is determined by 
the strength of excitation current from the spreading layer, gi oc Ii in weak inversion. 
Since the weight changes are governed by strengths of the excitation currents from 
the spreading layer, clusters of weights are changed at a time. This enhances the 
fault tolerance of the circuit since the group of weights surrounding a bad one can 
compensate for it. 
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Experimental Evaluation 

Several different chips have been fabricated in 21' p-well CMOS and tested to evalu­
ate the principles described here. The most recent of these has 512 weights arranged 
in a 64 x 8 matrix connected to form a one dimensional array. The active area of 
this chip is 4.1mm x 3.7mm. The input signal is digital with the place encoding 
performed by a conventional address decoder. To maximize the flexibility of the 
chip, the excitation is applied to the spreading layer by a register located in each 
cell. By writing to multiple registers between resets, the spreading layer can be ex­
cited at multiple points simultaneously. This feature allows the chip to be treated 
as a single I-dimensional spline with 512 weights or, for example, as the sum of 
four distinct I-dimensional splines each made up of 128 weights. One of the most 
noticeable virtues of this design is the simplicity of the layout due to the absence 
of any dear distinction between 'weights' and 'units'. The primitive cell consists of 
a register, a piece of the spreading network, a weight change amplifier, a storage 
capacitor and output amplifier. All but a tiny fraction of the chip is a tiling of 
this primitive cell. The excess circuitry consists of the address decoders, a timing 
circuit to control the duration of weight changes and some biasing circuitry for the 
spreading layer. 

To execute LMS learning, the user need only provide a sequence of target voltages 
and a current proportional to the duration of weight changes. Under reasonable 
operating conditions a weight updates cycle takes less than 11'8 implying a weight 
change rate of 5 x 108 connections/second. The response of the chip to a single 
weight change after initialization is shown in in figure 5a. One feature of this plot 
is striking - even though the distribution of offsets in the individual amplifiers has 
a variance of 13mV, the ripple in the output of the chip is about a ImV. For some 
computations, it appears the limiting factor on the accuracy of the chip is the rate 
of weight decay, about IOmV/s. 

As a more strenuous test of the functionality of the chip we trained it to predict 
chaotic time series generated by the well know logistic equation, 

Xt+l = 4axt{1 - x,), a < 1. 
Some experimental results for the mean prediction error are shown in figure 5b. 
In these experiments, a mean prediction error of 3% is achieved, which is well 
above the intrinsic accuracy of the circuit. A detailed examination of the error 
rate as a function of the size and shape of the bumps indicates that the problem 
lies in the long tails exhibited by the spreading layer when the n-channel pass 
transistors are turned on. This tail falls off very slowly due to the body effect. 
One remedy to this problem is to actively bias the gates of the n-channel pass 
transistors to be a programmed offset above their source voltages (Mead, 1989). A 
simpler solution is to subtract a fixed current from each of the bias current defined 
by the spreading layer. This solution costs a mere 4 transistors and has the added 
benefit of guaranteeing that the bumps will always have a finite support. 

Conclusion 

We have demonstrated that neural network learning can be efficiently mapped onto 
analog VLSI provided that the network architecture and training procedure are 
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Figure 5: Some experimental results from a splining circuit. (a) The response of 
the circuit to learning one data point after initialization of the weights to a constant 
value. (b) Experimental mean prediction while learning a chaotic time series. 

tailored to match the constraints imposed by VLSI. Besides the computational 
speed and low power consumption ( 300pA ) that follow directly from this mapping 
onto VLSI, the circuit also demonstrates intrinsic fault tolerance to defects in the 
weights. 
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