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Abstract 

A high speed implementation of the CMAC neural network was designed 
using dedicated CMOS logic. This technology was then used to implement 
two general purpose CMAC associative memory boards for the VME bus. 
Each board implements up to 8 independent CMAC networks with a total 
of one million adjustable weights. Each CMAC network can be configured 
to have from 1 to 512 integer inputs and from 1 to 8 integer outputs. 
Response times for typical CMAC networks are well below 1 millisecond, 
making the networks sufficiently fast for most robot control problems, and 
many pattern recognition and signal processing problems. 

1 INTRODUCTION 

We have been investigating learning techniques for the control of robotic manipu­
lators which utilize extensions of the CMAC neural network as developed by Albus 

1022 



Design and Implementation of a High Speed CMAC Neural Network 1023 

(1972; 1975; 1979). The learning control techniques proposed have been studied 
in our laboratory in a series of real time experimental studies (Miller, 1986; 1987; 
1989; Miller et al., 1987; 1988; 1990). These studies successfully demonstrated the 
ability to learn the kinematics of a robot/video camera system interacting with 
randomly oriented objects on a moving conveyor, and to learn the dynamics of a 
multi-axis industrial robot during high speed motions. We have also investigated 
the use of CMAC networks for pattern recognition (Glanz and Miller, 1987; Herold 
et al., 1988) and signal processing (Glanz and Miller, 1989) applications, with en­
couraging results. The primary goal of this project was to implement a compact, 
high speed version of the CMAC neural network using CMOS logic cell arrays. Two 
prototype CMAC associative memory systems for the industry standard VME bus 
were then constructed. 

2 THE CMAC NEURAL NETWORK 

Figure 1 shows a simple example of a CMAC network with two inputs and one 
output. Each variable in the input state vector is fed to a series of input sensors 
with overlapping receptive fields. The width of the receptive field of each sensor 
produces input generalization, while the offset of the adjacent fields produces input 
quantization. The binary outputs of the input sensors are combined in a series of 
threshold logic units (called state space detectors) with thresholds adjusted to pro­
duce logical AND functions. Each of these units receives one input from the group 
of sensors for each input variable, and thus its input receptive field is the interior 
of a hypercube in the input hyperspace. The input sensors are interconnected in 
a sparse and regular fashion, so that each input vector excites a fixed number of 
state space detectors. The outputs of the state space detectors are connected ran­
domly to a smaller set of threshold logic units (called multiple field detectors) with 
thresholds adjusted such that the output will be on if any input is on. The receptive 
field of each of these units is thus the union of the fields of many of the state space 
detectors. Finally, the output of each multiple field detector is connected, through 
an adjustable weight, to an output summing unit. The output for a given input is 
thus the sum of the weights selected by the excited multiple field detectors. 

The nonlinear nature of the CMAC network is embodied in the interconnections of 
the input sensors, state space detectors, and multiple field detectors, which perform 
a fixed nonlinear associative mapping of the continuous valued input vector to a 
many dimensional binary valued vector (which has tens or hundreds of thousands 
of dimensions in typical implementations). The adaptation problem is linear in this 
many dimensional space, and all of the convergence theorems for linear adaptive 
elements apply. 

3 THE CMAC HARDWARE DESIGN 

The custom implementation of the CMAC associative memory required the devel­
opment of two devices. The first device performs the input associative mapping, 
converting application relevant input vectors into traditional RAM addresses. The 
second device performs CMAC response accumulation, summing the weights from 
all excited receptive fields. Both devices were implemented using 70 MHz XILINX 
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Figure 1: A Simple Example of a CMAC Neural Network 

3090 programmable logic cell arrays. 

The associative mapping device uses a bit recursive mapping scheme developed at 
UNH, which is similar in philosophy to the CMAC mapping proposed by Albus, 
but is structured for efficient implementation using discrete logic. The" address" of 
each excited virtual receptive field is formed recursively by clocking the input vector 
components sequentially from a buffer FIFO. The hashing of the virtual receptive 
field address to a physical RAM address is performed simultaneously, using pipelined 
logic. The resulting associative mapping generates one 18 bit RAM address for a 
given input vector. The multiple addresses, corresponding to the multiple receptive 
fields excited by a single input vector could be generated simultaneously using 
parallel addressing circuits, or sequentially using a single circuit. 

The second CMAC device serves basically as an accumulator during CMAC response 
generation. As successive addresses are produced by the associative mapping circuit, 
the accumulator sums the corresponding values from the data RAM. During memory 
training, the response accumulation circuit adds the training adjustment to each 
of the addressed memory locations, placing the result back in the RAM. Eight 
independent CMAC output channels were placed on a single device. 

In the final VME system design (Figure 2), a single CMAC associative mapping 
device was used. Overlapping receptive fields were implemented sequentially using 
the same device. A single CMAC response accumulation device was used, providing 
eight parallel output channels. A weight vector memory containing 1 million 8 
bit weights was provided using 85 nanosecond 512 KByte static RAM SIMMs. 
A TMS320E15 micro controller was utilized to supervise communications with the 
VME bus. The operational firmware for the micro controller chip was designed to 
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Figure 2: The Component Side of the VME Based CMAC Associative 1\lemory 
Card. The two large XILINX 3090 logic cell arrays implement the CMAC associative 
mapping and the response accumulation/weight adjustment circuitry. The weights 
are stored in the 1 Mbyte static RAM. The TMS320E15 microcontroller supervises 
communications between the CMAC hardware and the VME host. 

provide maximum flexibility in the logical organization of the CMAC associative 
memory, as viewed by the VME host system. The board can be initialized to act as 
from 1 to 8 independent virtual CMAC networks. For each network, the number of 
16 bit inputs is selectable from 1 to 512, the number of 16 bit outputs is selectable 
from 1 to 8, and the number of overlapping receptive fields is selectable from 2 to 
256. 

Figure 3 shows typical response times during training and response generation op­
erations for a CMAC network with 1 million adjustable weights. The data shown 
represent networks with 32 integer inputs and 8 integer outputs, with the num­
ber of overlapping receptive fields varied between 8 and 256. Throughout most of 
this range CMAC training and response times are well below 1 millisecond. These 
performance specifications should accommodate typical real time control problems 
(allowing 1000 cycle per second control rates), as well as many problems in pattern 
recognition. 

A similar CMAC system for the 16 bit PC-AT bus has been developed by the 
Shenandoah Systems Company for commercial applications. This CMAC system 
supports both 8 and 16 bit adjustable weights (1 Mbyte total storage), and 8 inde­
pendent virtual CMAC networks on a single card. Response times for the commer­
cial CMAC-AT card are similar to those shown in Figure 3. A commercial version 
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Figure 3: CMAC Associative Memory Response and Training Times. Response 
times are shown for values of the generalization parameter (the number of overlap­
ping receptive fields) between 8 and 256. In each case the CMAC had 32 integel' 
inputs, 8 integer outputs, and one million adjustable weights. 

of the VME bus design is currently under development . 
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