
Basis-Function Trees as a Generalization of Local
Variable Selection Methods for Function

Approximation

Terence D. Sanger
Dept. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, E25-534
Cambridge, MA 02139

Abstract

Local variable selection has proven to be a powerful technique for ap­
proximating functions in high-dimensional spaces. It is used in several
statistical methods, including CART, ID3, C4, MARS, and others (see the
bibliography for references to these algorithms). In this paper I present
a tree-structured network which is a generalization of these techniques.
The network provides a framework for understanding the behavior of such
algorithms and for modifying them to suit particular applications.

1 INTRODUCTION

Function approximation on high-dimensional spaces is often thwarted by a lack of
sufficient data to adequately "fill" the space, or lack of sufficient computational
resources. The technique of local variable selection provides a partial solution to
these problems by attempting to approximate functions locally using fewer than the
complete set of input dimensions.

Several algorithms currently exist which take advantage of local variable selection,
including AID (Morgan and Sonquist, 1963, Sonquist et al., 1971), k-d Trees (Bent­
ley, 1975), ID3 (Quinlan, 1983, Schlimmer and Fisher, 1986, Sun et ai., 1988),
CART (Breiman et al., 1984), C4 (Quinlan, 1987), and MARS (Friedman, 1988),
as well as closely related algorithms such as GMDH (Ivakhnenko, 1971, Ikeda et
ai., 1976, Barron et al., 1984) and SONN (Tenorio and Lee, 1989). Most of these
algorithms use tree structures to represent the sequential incorporation of increas­
ing numbers of input variables. The differences between these techniques lie in the
representation ability of the networks they generate, and the methods used to grow
and prune the trees. In the following I will show why trees are a natural structure

700

Basis-Function Trees as a Generalization of Local Variable Selection Methods 701

for these techniques, and how all these algorithms can be seen as special cases of a
general method I call "Basis Function Trees". I will also propose a new algorithm
called an "LMS tree" which has a simple and fast network implementation.

2 SEPARABLE BASIS FUNCTIONS

Consider approximating a scalar function I(x) of d-dimensional input x by

L

I(xt, ... ,Xd) ~ L C;U;(Xl' ... ,Xd)
;=1

(1)

where the u;'s are a finite set of nonlinear basis functions, and the c;'s are constant
coefficients. If the u/s are separable functions we can assume without loss of gener­
ality that there exists a finite set of scalar-input functions {4>n }~=1 (which includes
the constant function), such that we can write

(2)

where xp is the p'th component of x, 4>ri (xp) is a scalar function of scalar input xp,
• p

and r~ is an integer from 1 to N specifying which function 4> is chosen for the p'th
dimension of the i'th basis function Ui.

If there are d input dimensions and N possible scalar functions 4>n, then there are
N d possible basis functions U;. If d is large, then there will be a prohibitively
large number of basis functions and coefficients to compute. This is one form of
Bellman's "curse of dimensionality" (Bellman, 1961). The purpose of local variable
selection methods is to find a small basis which uses products of fewer than d of
the 4>n's. If the 4>n's are local functions, then this will select different subsets of the
input variables for different ranges of their values. Most of these methods work by
incrementally increasing both the number and order of the separable basis functions
until the approximation error is below some threshold.

3 TREE STRUCTURES

Polynomials have a natural representation as a tree structure. In this representation,
the output of a subtree of a node determines the weight from that node to its parent.
For example, in figure 1, the subtree computes its output by summing the weights
a and b multiplied by the inputs x and y, and the result ax + by becomes the weight
from the input x at the first layer. The depth of the tree gives the order of the
polynomial, and a leaf at a particular depth p represents a monomial of order p
which can be found by taking products of all inputs on the path back to the root.

Now, if we expand equation 1 to get

L

I(xl, .. . , Xd) ~ '" ci4>r i (xt) ... 4>r i (Xd) L....J 1 d
(3)

;=1

we see that the approximation is a polynomial in the terms 4>rl (Xp). So the approx-
p

702 Sanger

x(ax+by) +cy+dz

x y

Figure 1: Tree representation of the polynomial ax2 + bxy + cy + dz.

imation on separable basis functions can be described as a tree where the "inputs"
are the one-dimensional functions <Pn(xp), as in figure 2.

Most local variable selection techniques can be described in this manner. The
differences in representation abilities of the different networks are determined by
the choice of the one-dimensional basis functions <Pn . Classification algorithms such
as CART, AID, C4, or ID3 use step-functions so that the resulting approximation
is piecewise constant. MARS uses a cubic spline basis so that the result is piecewise
cubic.

I propose that these algorithms can be extended by considering many alternate
bases. For example, for bandlimited functions the Fourier basis may be useful, for
which <Pn(xp) = sin(nxp) for n odd, and cos(nxp) for n even. Alternatively, local
Gaussians may be used to approximate a radial basis function representation. Or
the bits of a binary input could be used to perform Boolean operations. I call the
class of all such algorithms "Basis Function Trees" to emphasize the idea that the
basis functions are arbitrary.

It is important to realize that Basis Function Trees are fundamentally different
from the usual structure of multi-layer neural networks, in which the result of a
computation at one layer provides the data input to the next layer. In these tree
algorithms, the result of a computation at one layer determines the weights at the
next layer. Lower levels control the behavior of the processing at higher levels, but
the input data never traverses more than a single level.

4 WEIGHT LEARNING AND TREE GROWING

In addition to the choice of basis functions, one also has a choice of learning algo­
rithm. Learning determines both the tree structure and the weights.

There are many ways to adjust the weights. Since the entire network is equivalent
to a single-layer network described by (1), The mean-squared output error can
be minimized either directly using pseudo-inverse techniques, or iteratively using

Basis-Function 'frees as a Generalization of Local Variable Selection Methods 703

output

Figure 2: Tree representation of an approximation over separable basis functions.

recursive least squares (Ljung and Soderstrom, 1983) or the Widrow-Hoff LMS
algorithm (Widrow and Hoff, 1960). Iterative techniques are often less robust and
can take longer to converge than direct techniques, but they do not require storage
of the entire data set and can adapt to nonstationary input distributions.

Since the efficiency of local variable selection methods will depend on the size of
the tree, good tree growing and pruning algorithms are essential for performance.
Tree-growing algorithms are often called "splitting rules", and the choice of rule
should depend on the data set as well as the type of basis functions. AID and
the "Regression Tree" method in CART split below the leaf with maximum mean­
squared prediction error. MARS tests all possible splits by forming the new trees
and estimating a "generalized cross-validation" criterion which penalizes both for
output error and for increasing tree size. This method is likely to be more noise­
tolerant, but it may also be significantly slower since the weights must be re-trained
for every subtree which is tested. Most methods include a tree-pruning stage which
attempts to reduce the size of the final tree.

5 LMS TREES

I now propose a new member of the class of local variable selection algorithms which
I call an "LMS Tree" (Sanger, 1991, Sanger, 1990a, Sanger, 1990b). LMS Trees can
use arbitrary basis functions, but they are characterized by the use of a recursive
algorithm to learn the weights as well as to grow new subtrees.

The LMS tree will be built using one dimension of the input at a time. The ap­
proximation to !(Xl, ... , Xd) using only the first dimension of the input is given
by

N

!(Xl, ... , Xd) ~ i(xl) = L O'n<Pn(xt). (4)
n=l

704 Sanger

I use the Widrow-Hoff LMS learning rule (Widrow and Hoff, 1960) to minimize the
mean-squared approximation error based on only the first dimension:

(5)

where '7 is a rate term, and .6..an is the change in the weight an made in response
to the current value of Xl. After convergence, j(xd is the best approximation to
! based on linear combinations of 4>1(xd, ., ., 4>N(xd, and the expected value of
the weight change E[.6..a n] will be zero. However, there may still be considerable
variance of the weight changes, so that E[(.6..an)2] f. O. The weight change variance
indicates that there is "pressure" to increase or decrease the weights for certain
input values, and it is related to the output error by

E:-1 E[(.6..an)2] > E[(! _])2] > max E[(.6..an)2]
minxl E:=l 4>~(xd - - n E[(4)n(xt))2]

(6)

(Sanger, 1990b). So the output error will be zero if and only if E[(.6..an)2] = 0 for
all n.

We can decrease the weight change variance by using another network based on
X2 to add a variable term to the weight a r1 with largest variance, so that the new
network is given by

j(XI' X2) = I: a n4>n(XI) + (ar1 + t ar1,m4>m(X2)) 4>rl (xd· (7)
n¢~ m=l

.6..ar1 becomes the error term used to train the second-level weights a r1 ,m, so that

.6..ar1 ,m = .6..arl 4>m(X2). In general, the weight change at any layer in the tree is
the error term for the layer below, so that

(8)

where the root of the recursion is .6..ae = '7(!(Xl, ... , Xd) - j), and ae is a constant
term associated with the root of the tree.

As described so far, the algorithm imposes an arbitrary ordering on the dimensions
Xl, ... , Xd. This can be avoided by using all dimensions at once. The first layer tree
would be formed by the additive approximation

d N

!(XI,"" X'd) ~ I: I: a(n,p)4>n(Xp)' (9)
p=ln=l

New subtrees would include all dimensions and could be grown below any 4>n(xp).
Since this technique generates larger trees, tree pruning becomes very important.
In practice, most of the weights in large trees are often close to zero, so after a
network has been trained, weights below a threshold level can be set to zero and
any leaf with a zero weight can be removed.

LMS trees have the advantage of being extremely fast and easy to program. (For
example, a 49-input network was trained to a size of 20 subtrees on 40,000 data

Basis-Function Trees as a Generalization of Local Variable Selection Methods 705

Method Basis Functions Tree Growing

MARS Truncated Cubic Exhaustive search for split which minimizes
Polynomials a cross-validation criterion

CART (Re- Step functions Split leaf with largest mean-squared predic-
gression), AID tion error (= weight variance)

CART (Clas- Step functions Choose split which maximizes an information
sification), criterion
ID3, C4

k-d Trees Step functions Split leaf with the most data points

GMDH, Data Dimensions Find product of existing terms which maxi-
SONN mizes correlation to desired function

LMS Trees Any. All dimen- Split leaf with largest weight change variance
Slons present at
each level.

Figure 3: Existing tree algorithms.

samples in approximately 30 minutes of elapsed time on a sun-4 computer. The
LMS tree algorithm required 22 lines of C code (Sanger, 1990b).) The LMS rule
trains the weights and automatically provides the weight change variance which is
used to grow new subtrees. The data set does not have to be stored, so no memory
is required at nodes. Because the weight learning and tree growing both use the
recursive LMS rule, trees can adapt to slowly-varying nonstationary environments.

6 CONCLUSION

Figure 3 shows how several of the existing tree algorithms fit into the framework
presented here. Some aspects of these algorithms are not well described by this
framework. For instance, in MARS the location of the spline functions can depend
on the data, so the 4>n's do not form a fixed finite basis set. GMDH is not well
described by a tree structure, since new leaves can be formed by taking products of
existing leaves, and thus the approximation order can increase by more than 1 as
each layer is added. However, it seems that the essential features of these algorithms
and the way in which they can help avoid the "curse of dimensionality" are well
explained by this formulation.

Acknowledgements

Thanks are due to John Moody for introducing me to MARS, to Chris Atkeson for intro­
ducing me to the other statistical methods, and to the many people at NIPS who gave
useful comments and suggestions. The LMS Tree technique was inspired by a course at
MIT taught by Chris Atkeson, Michael Jordan, and Marc Raibert. This report describes
research done within the laboratory of Dr. Emilio Bizzi in the department of Brain and
Cognitive Sciences at MIT. The author was supported by an NDSEG fellowship from the
U.S. Air Force.

706 Sanger

References

Barron R. L., Mucciardi A. N., Cook F. J., Craig J. N., Barron A. R., 1984, Adaptive
learning networks: Development and application in the United States of algorithms related
to GMDH, In Farlow S. J., ed., Self-Organizing Methods in Modeling, Marcel Dekker, New
York.

Bellman R. E., 1961, Adaptive Control Processes, Princeton Univ. Press, Princeton, N J.

Bentley J. H., 1975, Multidimensional binary search trees used for associated searching,
Communications A CM, 18(9):509-517.

Breiman L., Friedman J., Olshen R., Stone C. J., 1984, Classification and Regression
Trees, Wadsworth Belmont, California.

Friedman J. H., 1988, Multivariate adaptive regression splines, Technical Report 102,
Stanford Univ. Lab for Computational Statistics.

Ikeda S., Ochiai M., Sawaragi Y., 1976, Sequential GMDH algorithm and its application
to river flow prediction, IEEE Trans. Systems, Man, and Cybernetics, SMC-6(7):473-479.

Ivakhnenko A. G., 1971, Polynomial theory of complex systems, IEEE Trans. Systems,
Man, and Cybernetics, SMC-1(4):364-378.

Ljung L., Soderstrom T., 1983, Theory and Practice of Recursive Identification, MIT
Press, Cambridge, MA.

Morgan J. N., Sonquist J. A., 1963, Problems in the analysis of survey data, and a
proposal, J. Am. Statistical Assoc., 58:415-434.

Quinlan J. R., 1983, Learning efficient classification procedures and their application to
chess end games, In Michalski R. S., Carbonell J. G., Mitchell T. M., ed.s, Machine
Learning: An Artificial Intelligence Approach, chapter 15, pages 463-482, Tioga P., Palo
Alto.

Quinlan J. R., 1987, Simplifying decision trees, Int. J. Man-Machine Studies, 27:221-234.

Sanger T. D., 1990a, Basis-function trees for approximation in high-dimensional spaces,
In Touretzky D., Elman J., Sejnowski T., Hinton G., ed.s, Proceedings of the 1990 Con­
nectionist Models Summer School, pages 145-151, Morgan Kaufmann, San Mateo, CA.

Sanger T. D., 1990b, A tree-structured algorithm for function approximation in high
dimensional spaces, IEEE Trans. Neural Networks, in press.

Sanger T. D., 1991, A tree-structured algorithm for reducing computation in networks
with separable basis functions, Neural Computation, 3(1), in press.

Schlimmer J. C., Fisher D., 1986, A case study of incremental concept induction, In Proc.
AAAI-86, Fifth National Conference on AI, pages 496-501, Los Altos, Morgan Kaufmann.

Sonquist J. A., Baker E. L., Morgan J. N., 1971, Searching for structure, Institute for
Social Research, Univ. Michigan, Ann Arbor.

Sun G. Z., Lee Y. C., Chen H. H., 1988, A novel net that learns sequential decision process,
In Anderson D. Z., ed., Neural Information Processing Systems, pages 760-766, American
Institute of Physics, New York.

Tenorio M. F., Lee W.-T., 1989, Self organizing neural network for optimum supervised
learning, Technical Report TR-EE 89-30, Purdue Univ. School of Elec. Eng.

Widrow B., Hoff M. E., 1960, Adaptive switching circuits, In IRE WESCON Conv.
Record, Part 4, pages 96-104.

