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Abstract 

Local variable selection has proven to be a powerful technique for ap­
proximating functions in high-dimensional spaces. It is used in several 
statistical methods, including CART, ID3, C4, MARS, and others (see the 
bibliography for references to these algorithms). In this paper I present 
a tree-structured network which is a generalization of these techniques. 
The network provides a framework for understanding the behavior of such 
algorithms and for modifying them to suit particular applications. 

1 INTRODUCTION 

Function approximation on high-dimensional spaces is often thwarted by a lack of 
sufficient data to adequately "fill" the space, or lack of sufficient computational 
resources. The technique of local variable selection provides a partial solution to 
these problems by attempting to approximate functions locally using fewer than the 
complete set of input dimensions. 

Several algorithms currently exist which take advantage of local variable selection, 
including AID (Morgan and Sonquist, 1963, Sonquist et al., 1971), k-d Trees (Bent­
ley, 1975), ID3 (Quinlan, 1983, Schlimmer and Fisher, 1986, Sun et ai., 1988), 
CART (Breiman et al., 1984), C4 (Quinlan, 1987), and MARS (Friedman, 1988), 
as well as closely related algorithms such as GMDH (Ivakhnenko, 1971, Ikeda et 
ai., 1976, Barron et al., 1984) and SONN (Tenorio and Lee, 1989). Most of these 
algorithms use tree structures to represent the sequential incorporation of increas­
ing numbers of input variables. The differences between these techniques lie in the 
representation ability of the networks they generate, and the methods used to grow 
and prune the trees. In the following I will show why trees are a natural structure 
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for these techniques, and how all these algorithms can be seen as special cases of a 
general method I call "Basis Function Trees". I will also propose a new algorithm 
called an "LMS tree" which has a simple and fast network implementation. 

2 SEPARABLE BASIS FUNCTIONS 

Consider approximating a scalar function I( x) of d-dimensional input x by 

L 

I(xt, ... ,Xd) ~ L C;U;(Xl' ... ,Xd) 
;=1 

(1) 

where the u;'s are a finite set of nonlinear basis functions, and the c;'s are constant 
coefficients. If the u/s are separable functions we can assume without loss of gener­
ality that there exists a finite set of scalar-input functions {4>n }~=1 (which includes 
the constant function), such that we can write 

(2) 

where xp is the p'th component of x, 4>ri (xp) is a scalar function of scalar input xp, 
• p 

and r~ is an integer from 1 to N specifying which function 4> is chosen for the p'th 
dimension of the i'th basis function Ui. 

If there are d input dimensions and N possible scalar functions 4>n, then there are 
N d possible basis functions U;. If d is large, then there will be a prohibitively 
large number of basis functions and coefficients to compute. This is one form of 
Bellman's "curse of dimensionality" (Bellman, 1961). The purpose of local variable 
selection methods is to find a small basis which uses products of fewer than d of 
the 4>n's. If the 4>n's are local functions, then this will select different subsets of the 
input variables for different ranges of their values. Most of these methods work by 
incrementally increasing both the number and order of the separable basis functions 
until the approximation error is below some threshold. 

3 TREE STRUCTURES 

Polynomials have a natural representation as a tree structure. In this representation, 
the output of a subtree of a node determines the weight from that node to its parent. 
For example, in figure 1, the subtree computes its output by summing the weights 
a and b multiplied by the inputs x and y, and the result ax + by becomes the weight 
from the input x at the first layer. The depth of the tree gives the order of the 
polynomial, and a leaf at a particular depth p represents a monomial of order p 
which can be found by taking products of all inputs on the path back to the root. 

Now, if we expand equation 1 to get 

L 

I(xl, .. . , Xd) ~ '" ci4>r i (xt) ... 4>r i (Xd) L....J 1 d 
(3) 

;=1 

we see that the approximation is a polynomial in the terms 4>rl (Xp ). So the approx-
p 
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x(ax+by) +cy+dz 

x y 

Figure 1: Tree representation of the polynomial ax2 + bxy + cy + dz. 

imation on separable basis functions can be described as a tree where the "inputs" 
are the one-dimensional functions <Pn(xp ), as in figure 2. 

Most local variable selection techniques can be described in this manner. The 
differences in representation abilities of the different networks are determined by 
the choice of the one-dimensional basis functions <Pn . Classification algorithms such 
as CART, AID, C4, or ID3 use step-functions so that the resulting approximation 
is piecewise constant. MARS uses a cubic spline basis so that the result is piecewise 
cubic. 

I propose that these algorithms can be extended by considering many alternate 
bases. For example, for bandlimited functions the Fourier basis may be useful, for 
which <Pn(xp ) = sin(nxp ) for n odd, and cos(nxp ) for n even. Alternatively, local 
Gaussians may be used to approximate a radial basis function representation. Or 
the bits of a binary input could be used to perform Boolean operations. I call the 
class of all such algorithms "Basis Function Trees" to emphasize the idea that the 
basis functions are arbitrary. 

It is important to realize that Basis Function Trees are fundamentally different 
from the usual structure of multi-layer neural networks, in which the result of a 
computation at one layer provides the data input to the next layer. In these tree 
algorithms, the result of a computation at one layer determines the weights at the 
next layer. Lower levels control the behavior of the processing at higher levels, but 
the input data never traverses more than a single level. 

4 WEIGHT LEARNING AND TREE GROWING 

In addition to the choice of basis functions, one also has a choice of learning algo­
rithm. Learning determines both the tree structure and the weights. 

There are many ways to adjust the weights. Since the entire network is equivalent 
to a single-layer network described by (1), The mean-squared output error can 
be minimized either directly using pseudo-inverse techniques, or iteratively using 
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output 

Figure 2: Tree representation of an approximation over separable basis functions. 

recursive least squares (Ljung and Soderstrom, 1983) or the Widrow-Hoff LMS 
algorithm (Widrow and Hoff, 1960). Iterative techniques are often less robust and 
can take longer to converge than direct techniques, but they do not require storage 
of the entire data set and can adapt to nonstationary input distributions. 

Since the efficiency of local variable selection methods will depend on the size of 
the tree, good tree growing and pruning algorithms are essential for performance. 
Tree-growing algorithms are often called "splitting rules", and the choice of rule 
should depend on the data set as well as the type of basis functions. AID and 
the "Regression Tree" method in CART split below the leaf with maximum mean­
squared prediction error. MARS tests all possible splits by forming the new trees 
and estimating a "generalized cross-validation" criterion which penalizes both for 
output error and for increasing tree size. This method is likely to be more noise­
tolerant, but it may also be significantly slower since the weights must be re-trained 
for every subtree which is tested. Most methods include a tree-pruning stage which 
attempts to reduce the size of the final tree. 

5 LMS TREES 

I now propose a new member of the class of local variable selection algorithms which 
I call an "LMS Tree" (Sanger, 1991, Sanger, 1990a, Sanger, 1990b). LMS Trees can 
use arbitrary basis functions, but they are characterized by the use of a recursive 
algorithm to learn the weights as well as to grow new subtrees. 

The LMS tree will be built using one dimension of the input at a time. The ap­
proximation to !(Xl, ... , Xd) using only the first dimension of the input is given 
by 

N 

!(Xl, ... , Xd) ~ i(xl) = L O'n<Pn(xt). ( 4) 
n=l 
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I use the Widrow-Hoff LMS learning rule (Widrow and Hoff, 1960) to minimize the 
mean-squared approximation error based on only the first dimension: 

(5) 

where '7 is a rate term, and .6..an is the change in the weight an made in response 
to the current value of Xl. After convergence, j(xd is the best approximation to 
! based on linear combinations of 4>1(xd, ., ., 4>N(xd, and the expected value of 
the weight change E[.6..a n ] will be zero. However, there may still be considerable 
variance of the weight changes, so that E[(.6..an )2] f. O. The weight change variance 
indicates that there is "pressure" to increase or decrease the weights for certain 
input values, and it is related to the output error by 

E:-1 E[(.6..an )2] > E[(! _ ])2] > max E[(.6..an )2] 
minxl E:=l 4>~(xd - - n E[(4)n(xt))2] 

(6) 

(Sanger, 1990b). So the output error will be zero if and only if E[(.6..an )2] = 0 for 
all n. 

We can decrease the weight change variance by using another network based on 
X2 to add a variable term to the weight a r1 with largest variance, so that the new 
network is given by 

j(XI' X2) = I: a n4>n(XI) + (ar1 + t ar1,m4>m(X2)) 4>rl (xd· (7) 
n¢~ m=l 

.6..ar1 becomes the error term used to train the second-level weights a r1 ,m, so that 

.6..ar1 ,m = .6..arl 4>m(X2). In general, the weight change at any layer in the tree is 
the error term for the layer below, so that 

(8) 

where the root of the recursion is .6..ae = '7(!(Xl, ... , Xd) - j), and ae is a constant 
term associated with the root of the tree. 

As described so far, the algorithm imposes an arbitrary ordering on the dimensions 
Xl, ... , Xd. This can be avoided by using all dimensions at once. The first layer tree 
would be formed by the additive approximation 

d N 

!(XI,"" X'd) ~ I: I: a(n,p)4>n(Xp)' (9) 
p=ln=l 

New subtrees would include all dimensions and could be grown below any 4>n(xp). 
Since this technique generates larger trees, tree pruning becomes very important. 
In practice, most of the weights in large trees are often close to zero, so after a 
network has been trained, weights below a threshold level can be set to zero and 
any leaf with a zero weight can be removed. 

LMS trees have the advantage of being extremely fast and easy to program. (For 
example, a 49-input network was trained to a size of 20 subtrees on 40,000 data 
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Method Basis Functions Tree Growing 

MARS Truncated Cubic Exhaustive search for split which minimizes 
Polynomials a cross-validation criterion 

CART (Re- Step functions Split leaf with largest mean-squared predic-
gression), AID tion error (= weight variance) 

CART (Clas- Step functions Choose split which maximizes an information 
sification), criterion 
ID3, C4 

k-d Trees Step functions Split leaf with the most data points 

GMDH, Data Dimensions Find product of existing terms which maxi-
SONN mizes correlation to desired function 

LMS Trees Any. All dimen- Split leaf with largest weight change variance 
Slons present at 
each level. 

Figure 3: Existing tree algorithms. 

samples in approximately 30 minutes of elapsed time on a sun-4 computer. The 
LMS tree algorithm required 22 lines of C code (Sanger, 1990b).) The LMS rule 
trains the weights and automatically provides the weight change variance which is 
used to grow new subtrees. The data set does not have to be stored, so no memory 
is required at nodes. Because the weight learning and tree growing both use the 
recursive LMS rule, trees can adapt to slowly-varying nonstationary environments. 

6 CONCLUSION 

Figure 3 shows how several of the existing tree algorithms fit into the framework 
presented here. Some aspects of these algorithms are not well described by this 
framework. For instance, in MARS the location of the spline functions can depend 
on the data, so the 4>n's do not form a fixed finite basis set. GMDH is not well 
described by a tree structure, since new leaves can be formed by taking products of 
existing leaves, and thus the approximation order can increase by more than 1 as 
each layer is added. However, it seems that the essential features of these algorithms 
and the way in which they can help avoid the "curse of dimensionality" are well 
explained by this formulation. 
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