
Learning Trajectory and Force Control 
of an Artificial Muscle Arm 

by Parallel-hierarchical Neural Network Model 

Masazumi Katayama Mitsuo Kawato 
Cognitive Processes Department 

ATR Auditory and Visual Perception Research Laboratories 
Seika-cho. Soraku-gun. Kyoto 619-02. JAPAN 

Abstract 
We propose a new parallel-hierarchical neural network model to enable motor 
learning for simultaneous control of both trajectory and force. by integrating 
Hogan's control method and our previous neural network control model using a 
feedback-error-learning scheme. Furthermore. two hierarchical control laws 
which apply to the model, are derived by using the Moore-Penrose pseudo­
inverse matrix. One is related to the minimum muscle-tension-change trajectory 
and the other is related to the minimum motor-command-change trajectory. The 
human arm is redundant at the dynamics level since joint torque is generated by 
agonist and antagonist muscles. Therefore, acquisition of the inverse model is 
an ill-posed problem. However. the combination of these control laws and 
feedback-error-learning resolve the ill-posed problem. Finally. the efficiency of 
the parallel-hierarchical neural network model is shown by learning experiments 
using an artificial muscle arm and computer simulations. 

1 INTRODUCTION 

For humans to properly interact with the environment using their arms. both arm posture 
and exerted force must be skillfully controlled. The hierarchical neural network model 
which we previously proposed was successfully applied to trajectory control of an 
industrial manipulator (Kawato et al.. 1987). However. this model could not directly be 
applied to force control. because the manipulator mechanism was essentially different 
from the musculo-skeletal system of a human arm. Hogan proposed a biologically 
motivated control method which specifies both the virtual trajectory and the mechanical 
impedance of a musculo-skeletal system (Hogan, 1984, 1985). One of its advantages is 
that both trajectory and force can be simultaneously controlled. However. this control 
method does not explain motor learning. 
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In this paper, by integrating these two previous studies, we propose a new Parallel­
Hierarchical Neural network Model (PHNM) using afeedhack-error-learning scheme we 
previously proposed (Kawato et aI., 1987), as shown in Fig.l. PHNM explains the 
biological motor learning for simultaneous control of both trajectory and force. Arm 
movement depends on the static and dynamic properties of a musculo-skeletal system. 
From this viewpoint, its inverse model which computes a motor command from a desired 
trajectory and force, consists of two parallel inverse models: the Inverse Statics Model 
(ISM) and the Inverse Dynamics Model (ISM) (see Fig.I). 

The human arm is redundant at the dynamics level since joint torque is generated by 
agonist and antagonist muscles . Therefore, acquisition of the inverse model is an ill­
posed problem in the sense that the muscle tensions can not be uniquely determined from 
the prescribed trajectory and force. The central nervous system can resolve the ill-posed 
problem by applying suitable constraints. Based on behavioral data of human multi-joint 
arm movement, Uno et al. (1989) found that the trajectory was generated on the criterion 
that the time integral of the squared sum of the rate of change of muscle tension is 
minimized. From this point of view, we assume that the central nervous system controls 
the arm by using two hierarchical objective functions. One objective function is related 
to the minimum muscle-tension-change trajectory. The other objective function is related 
to the minimum motor-command-change trajectory. From this viewpoint, we propose 
two hierarchical control laws which apply to the feedback controller shown in Fig.l. 
These control laws are calculated with the Moore-Penrose pseudo-inverse matrix of the 
Jacobian matrix from muscle tensions or motor commands to joint torque. The 
combination of these control laws and the feedback-error-Iearning resolve the ill-posed 
problem. As a result, the inverse model related to hierarchical objective functions can be 
acquired by PHNM. We ascertained the efficiency of PHNM by performing experiments 
in learning control using an artificial-muscle arm with agonist and antagonist muscle-like 
rubber actuators as shown in Fig.2 (Katayama et aI., 1990). 

2 PARALLEL-HIERARCHICAL NEURAL NETWORK MODEL 

In a simple case, the dynamics equation of a human multi-joint arm is described as 
follows: 

R(O)8 + B(O, 0)0 = r+ G(O), 
. . 

'! = af(O)Tf(M f' 0, 0) - ae(O)Te(Me, 0, 0). 

(1a) 

(1 b) 

Here, R( 0) is the inertia matrix, B( 0,0) expresses a matrix of centrifugal, coriolis and 
friction forces and G(O) is the vector of joint torque due to gravity. Mfand Me are agonist 
and antagonist motor commands, Tf and Te are agonist and antagonist muscle tensions, 0 
is the joint-angle, '! is joint torque generated from the tensions of a pair of muscles and 
aj. 0) and ai 0) are moment arms. 

If the arm is static (0 = 0 = 0), (1 a) and (1 b) are reduced to the following: 

0= af(O)Tf(M 1,0,0) - ae(O)Te(Me, 0,0) + G(O). (2) 

Therefore, (2) is a statics equation. The problem, which calculates the motor commands 
from joint angles based on (2), is called the inverse statics. There are two difficulties: 
first, (2) including nonlinear functions (al' ae. TI , Te and G), must be solved. Second, 
the inverse statics is an ill-posed problem as mentioned above. These difficulties are 
resolved by·the ISM. The problem of computing dynamic torque other than (2) is called 
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Figure 1: Parallel-Hierarchical Neural Network Model 

the inverse dynamics and it is resolved by the 10M. The main role of the ISM is to 
control the equilibrium posture and mechanical stiffness (Hogan, 1984), and that of the 
IDM is to compensate for dynamic properties of the arm in fast movements. PHNM, in 
addition to a feedback controller, hierarchically arranges these parallel inverse models. 
The motor command is the sum of three outputs (M ism' M idm and Mfe) calculated by the 
ISM, the 10M and the feedback controller, respectively, as shown in Fig.1. The outputs 
from the ISM and 10M are calculated by feedforward neural networks with synaptic 
weights w from desired trajectory ()d and desired force F d. These neural network models 
can be described as the mapping from inputs ()d and F d to motor commands. In order to 
acquire the parallel inverse model, synaptic weights change according to the following 
feedback-error-learning algorithm. 

dw = (a'P)t M 
dt dw fe (3) 

The ISM learns when the arm is static and the 10M learns when it is moving. The 

feedback motor command Mfe is fed only to the ISM when e = 0 and only to the 10M 

when 0 * 0 as an error signal for synaptic modification. The arm is mainly controlled by 
the feedback controller before learning, and the feed forward control is basically performed 
only by the parallel inverse model after learning because the output Mfe of the feedback 
controller is minimized after learning. Two control laws which apply to the feedback 
controller, are derived below. 

3 HIERARCHICAL CONTROL MECHANISM 

In order to acquire the parallel inverse models related to hierarchical objective functions, 
we propose two control laws reducing the redundancy at the dynamics level, which apply 
to a feedback controller in the PHNM. 

3.1 MATHEMATICAL MUSCLE MODEL 
Tensions (T[, Te) of agonist and antagonist muscles are generally modeled as follows: 

T[ = K(M f){ ()oof(Mf) - ()} - B(M f)O, 

Te = K(Me){ e - ()o.e(Me)} + B(Me)O. 

( 4a) 

(4b) 
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Here, M consists of MJ and Me for agonist and antagonist muscles, respectively. The 
mechanical impedance of a human arm can be manipulated by the stiffness K(M) and 
viscosity B(M) of the muscle itself, depending on their motor commands. ()oIMJ) and 
()o.e<M e) are joint angles at equilibrium position. K(M) , B(M) , ()oIMJ) and ()o,iM e) are 

approximately given as K(M) == ko + kM, B(M) == bo + bM, ()o,f (M J) == ()o + eMJ and 

80•e{Me} =-80 -eMe, respectively. k and b are coefficients which, respectively, 

determine elasticity and viscosity. ko and bo are intrinsic elasticity and viscosity, 
respectively. ()o is the intrinsic equilibrium angle and c is a constant. Small changes in 
joint torque are expressed by using the Jacobian matrix A from small changes in motor 
command to small changes in joint torque. Therefore, by using the Moore-Penrose 
pseudo-inverse matrix A#, small changes in motor command are calculated as follows: 

(MfJJ=A#~'l'= 21 (aJ«()(C+Rf)J~'l' 
Mfe aJ«()2(C+RJ) +ae«()/(C-Re)2 ae«()}(C-1:e) 

.: C = -(k() + bO), 

# l' ( l' )-1 A =A AA , (5) 

3.2 HIERARCHICAL CONTROL LAWS 

Two feedback control laws are explained below, which apply to the feedback controller 
shown in Fig.1. Firstly, .1TJ=.1MJ and .1Te=.1Me are given from (4a) and (4b) by 

assuming k=b=O, c:;tO, a/()=ai()=a and g.r=Re= 1 in the simplest case. The solution 
A#.1'l' in which the norm (.1Tj+.1Te 2 )112 of vector .1 T is minimized by using the 
pseudo-inverse matrix A#, is selected. Therefore, the control law related to the minimum 
muscle-tension-change trajectory is derived from (5). Then the feedback control law is 

acquired by using ~'l' = K p( ()d - ()r) + Kd( Od - Or) + K J( Fd - Fr). Here, Kp' Kd and KJ 
are feedback gains. Learning is performed by applying the motor commands calculated by 
this feedback control law to the learning algorithm of (3). As a result, the inverse model 
is acquired by the PHNM after learning. Only when a;C())=ae«())=a does, the inverse model 
strictly give the optimal solution based on the minimum muscle-tension-change 
trajectory during the movement. a is a constant moment arm. 

Next, another control law is derived from (5) by assuming k,b;r!{J, e=O, a/()=ae«())=a and 
g.r=ge= 1 by a similar way. In this case, the control law is related to the minimum motor­
command-change trajectory, because the norm (.1M/+.1M /)112 of vector.1M is 
minimized by using the pseudo-inverse matrix A # . Then the control law explains the 
behavioral data of rapid arm movement, during which the mechanical impedance is 
increased by coactivation of agonist and antagonist muscles (Kurauchi et aI., 1980). The 
mechanical impedance of the muscles increases when C increases. Therefore, C explains 
the coactivation because C increases when the arm moves rapidly. Thus, rapid arm 
movement can be stably executed by such coactivation. It is noted that the control law 
directly takes account of the variable stiffness and viscosity of the muscle itself. Learning 
is performed by the same algorithm above. As a result, the inverse model acquired by the 
PHNM gives the approximate solution related to the minimum motor-command-change 
trajectory, because A# depends on the joint angle in this case. Furthermore, stiffness and 
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virtual trajectory are uniquely determined from a 
mathematical muscle model using the outputs 
of the trained inverse models. 

4 EFFICIENCY OF PHNM 
The efficiency of the PHNM is shown by the 
experiment results using two hierarchical 
control laws. 

4.1 ARTIFICIAL MUSCLE ARM 

The artificial muscle arm used in our 
experiments is the rubber-actuator-arm (5 
degrees of freedom, 16 rubber actuators, made 
by Bridgestone Co.), as shown in Fig.2. which 
is a manipulator with agonist and antagonist 
muscle-like actuators. The actuators are made 
of rubber and driven by air. In our experiment, 
the motor command is air-pressure. 

The mechanical structure of the arti ficial arm is 
basically the same as that of the human arm. 

Figure 2: Artificial Muscle Arm 

Moreover, properties of the actuator are also similar to those of muscle. The actuator has 
a variahle mechanical impedance which consists of stiffness and viscosity. Then, the 
stiffness which is mechanically realized. expresses the spring-like behavior of muscle. 
This property acts as a simple mechanical feedback system whose time delay is "zero". 
Furthermore, the ratio of the output torque and the weight of the arm is extremely high. 
Therefore, we hope it will be easy to control the force and trajectory at the end-effector or 
joint. However, it is difficult to controi the trajectory of the arm because the artificial 
arm, like the human arm. is a very nonlinear system. We note that feedforward control 
using the trained ISM and 10M is necessary to control the arm. 

4.2 TRAJECTORY CONTROL OF ARTIFICIAL MUSCLE ARM 

Learning control experiments using an artificial muscle arm are performed with the 
feedback control law related to the minimum muscic-lensioll-c/zwIRe trajectory. The ISM 
and 10M use a 3-layer perceptron. The 
results shown in Fig.3 indicate that the 
conventional feedback control method can not 
realize accurate trajectory control, because the 
realized trajectory lagged behind the desired 
trajectory. While the results shown in FigAa 
indicate that accurate and smooth trajectory 
control of a slow movement can be realized 
only by feedforward control using the trained 
ISM and 10M after learning, because the 
realized trajectory fits the desired trajectory. 
Moreover, the result indicates that the PHNM 
can resolve the ill-posed inverse problem. 
The results shown in FigAb indicate that 
learning of the ISM and IDM is finished after 
about 2,000 iterations, because the output of 
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(in fast movement using computer simulation) 

the feedback controller is minimized. Then note that the output of the ISM is greater 
than the other outputs. Furthermore, we confirmed that by using an untrained trajectory, 
the generalization capability of the trained parallel inverse models is good. 

4.3 TRAJECTORY CONTROL IN FAST MOVEMENT 
One of the advantages of the control law related to the minimum motor-command-change 
criterion, is shown by a trajectory control experiment in fast movement. We confirmed 
that the feedback control law allowed stable trajectory control in fast movement. Control 
experiments were performed by computer simulation. The results shown in Fig.5a 
indicate that PHNM applying this feedback control law realizes stable trajectory control in 
rapid movement, because no oscillation characteristics can be found when the arm reaches 
the desired position. This is because the mechanical impedance of the joint increases 
when a pair of muscles are coactivated (see Fig.5b). Moreover, the results also explain 
behavioral data in fast arm movement (Kurauchi et aI., 1980). 
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4.4 FORCE CONTROL 

We confinned that the feedback control law 
related to the minimum motor-command­
change criterion succeeded for accurate force 
control. The results shown in Fig.6 
indicate that accurate force control can be 
performed by combining the trained IDM 
and ISM, with PHNM using this feedback 
control law . 

5 DISCUSSION 

The ISM we proposed in this paper has two 
advantages. The first is that it is easy to 
train the inverse model of the controlled 
object because the inverse model is 
separated into the ISM and IDM. The 

12 

g 10 

S-

0 
U 6-!5 
~ 

'" 
2 

o 

-/--', 

/ " 

f '. , , , ,; , 
( • '. 

I , 
f \ 

.. 
j 

j 
2 4 

Time 

'. 

Desired Force 
Realil.ed Force 

". 
6 
(sec.) 

/ 

Figure 6: Force Control Using Trained 
ISM and IDM With Control Law 

Relate to Minimum 
Motor-command-change Criterion 

second is that control using the ISM explains Bizzi's experiment results with a 
deafferented rhesus monkey (Bizzi et al., 1984). Furthermore the control using the ISM 
relates to Hogan's control method using the virtual trajectory (Hogan, 1984, 1985). 

The Parallel-Hierarchical Neural network Model proposed in this paper integrates Hogan's 
impedance control and our previous model, and hence can explain motor learning for 
simultaneous control of both trajectory and force. There is an infinite number of possible 
combinations of mechanical impedance and virtual trajectory that can produce the same 
torque and force. Thus, the problem of determining the impedance and the virtual 
trajectory was ill-posed in Hogan's framework. In the present paper, they were uniquely 
detennined from (5). 

References 

[1] Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. (1984) Posture Control and 
Trajectory Formation During Arm Movement. The Journal of Neuroscience, 4, II, 
2738-2744. 

[2] Hogan, N. (1984) An Organizing Principle for a Class of Voluntary Movements. 
The Journal of Neuroscience, 4, 11, 2745-2754. 

[3] Hogan, N. (1985) Impedance Control: An Approach to Manipulation Part I II III. 
Journal of Dynamic Systems, Measurement, and Control, 107, 1-24. 

[4] Katayama, M. & Kawato, M. (1990) Parallel-Hierarchical Neural Network Model for 
Motor Control of Musculo-Skeletal System. The Transactions of The Institute of 
Electronics, Information and Communication Engineers, J73-D-II, 8, 1328-1335. 
in Japanese. 

[5J Kawato, M., Furukawa, K. & Suzuki, R. (1987) A Hierarchical Neural-Network 
Model for Control and Learning of Voluntary Movement. Biological Cybernetics, 
57,169-185. 

[6] Kurauchi, S., Mishima, K. & Kurokawa, T. (1980) Characteristics of Rapid 
Positional Movements of Forearm. The Japanese Journal of Ergonomics, 16, 5, 
263-270. in Japanese. 

l7] Uno, Y., Suzuki, R. & Kawato, M. (1989) Minimum Muscle-Tension-Change 
Model which Reproduces Human Arm Movement. Proceedings (l the 4th 
Symposium on Biological and Physiological Engineering, 299-302. in Japanese. 


