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Learning an input-output mapping from a set of examples can be regarded 
as synthesizing an approximation of a multi-dimensional function. From 
this point of view, this form of learning is closely related to regularization 
theory, and we have previously shown (Poggio and Girosi, 1990a, 1990b) 
the equivalence between reglilari~at.ioll and a. class of three-layer networks 
that we call regularization networks. In this note, we ext.end the theory 
by introducing ways of <lealing with t.wo aspect.s of learning: learning in 
presence of unreliable examples or outliel·s, an<llearning from positive and 
negative examples. 

1 Introduction 

In previous papers (Poggio and Girosi, 1990a, 1990b) we have shown the equivalence 
between certain regularization techniques and a. cla'3s of tlll·ee-layer networks - that 
we call regularization networks - which are relat.ed to the Ra<lial Basis Functions 
interpolation method (Powell, 1987). In this not.e we indicat.e how it is possible 
to extend our theory of learning in order t.o deal with 1) occurence of unreliable 
examples, 2) negative examples. Both problems are also interesting from the point 
of view of classical approximation theory: 

1. discounting "bad" examples cOlTesponds to discarding, in the approximation 
of a function, data points that are outliel·s. 

2. learning by using negative examples - in addition to positive ones - corresponds 
to approximating a function considering not only points which the function 
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ought to be close to, but also point.s - or regions - that the functioll must 
avoid. 

2 Unreliable data 

Suppose that a set 9 = {(Xi, yd E Rn x R}f:l of data has been obtained by randomly 
sampling a function f, defined in Rn, in presence of noise, in a way that we can 
write 

Yi = f (xd + f i , i = 1, ... , N 

where fi are independent random variables. \Ve arc interested in recovering an 
estimate of the function f from the set of data [I. Taking a probabilistic approach, 
we can regard the function I as the realization of a random field with specified 
prior probability distribut.ion. Consequelltly, the data 9 and the function I are nOll 
independent random variables, and, by using Bayes rule, it is possible to express 
the conditional probability P[flg] of t.he function I, given the examples g, in terms 
of the prior probability of f, P[t], and the conditional probability of 9 given f, 
P[glf]: 

P[tlg] ex P[gll] P[t]. (1) 

A common choice (Marroquin et. al., 1987) for the prior probability distribut.ion 
P[f] is 

(2) 

where P is a differential operator (the so called sta bili:er), 11·11 is the L2 norm, and .x 
is a positive real number. This form of probability distribution assignes significant 
probability only to those functions for which the term liP 1112 is "small", that is to 
functions that do not vary too "quickly" in their domain. 

If the noise is Gaussian, the probabilit.y P[glf] can be written as: 

(3) 

where f3i = pI ,and (1i is the variance of t.he noise related to the i-th data point. 
u. 

The values of the variances are usually assumed to be equal to some known value 
(1, that reflects the accuracy of the measurement apparatus. However, in many 
cases we do not have access to such an information, and weaker assumptions have 
to be made. A fairly natural and general one consists in regarding the variances of 
the noise, as well as the function f, as random variables. Of course, some a priori 
knowledge about these variables, represented by an appropriate prior probability 
distribution, is needed. Let us denote by j.3 the set of random variables {f3df:I' By 
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means of Bayes rule we can compute the joint probability of the variables f and fJ· 
Assuming that the field f and the set fJ are conditionally independent we obtain: 

prj, f3lg] ex P[gIJ, f3] P[J] P[f3] (4) 

where P[f3] is the prior probability of the set of variances fJ and P[g If, f3] is the 
same as in eq. (3). Given the posterior probability (4) we are mainly interested in 
computing an estimate of J. Thus what we really need to compute is the marginal 
posterior probability of J, Pm [fl, that is obtained integrating equation (4) over the 
variables f3i: 

(5) 

A simple way to obtain an estimate of t.he fUllction f from the probability distribu­
tion (5) consists in computing the so callecl MAP (Maximum A Posteriori) estimate, 
that is the function that maximizes t.he post.erior probability P,n (f]. The problem 
of recovering the function f from the set of data g, with partial information about 
the amount of Gaussian noise affecting the data, is therefore equivalent to solving 
an appropriate variational problem. The specific form of the functional that has to 
be maximized - or minimized - depends on the proba.bility clistributions P(f] and 
P[f3]. 

Here we consider the following situation: we have knowledge that a given percentage, 
(1 - t) of the data is characterized by a Gaussian noise distribution of variance 
0"1 = (2f31)- 4, whereas for the rest of the data t.he variance of the noise is a very 
large number 0"2 = (2f32)-! (we will call these cla.ta "outliel·s"). This situation 
yields the following probability dist.ribution: 

N 

P[f3] = rn(1 -t)O(fJi - f31) + t O(fJi - f3:d] . (6) 
i=l 

In this case, choosing P(fl as in eq. (2), we can show that Pm(fl ex e-H[Jl, where 

N 

H(f] = L V(td + AIIP tl12 . (7) 
;=1 

Here V represents the effecti've potential 

(8) 

depicted in fig. (1) for different values of {32. 
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Figure 1: The effective potential V(x) for t = 0.1, f31 
values of f32: 0.1,0.03, 0.001 

3.0 and three different 

The MAP estimate is therefore obtained minimizing the fUllctional (7) . The first. 
term enforces closeness to the data, while the second term enforces smoothness of 
the solution, the trade off between these two opposite tendencies being controlled 
by the parameter A. Looking at fig. (1) we notice that, in the limit of f32 .-
0, the effective potential V is quadratic if the absolute value of its argument is 
smaller than a threshold, and constant othen-vise (fig . 1). Therefore , data points 
are taken in account when the interpolation error is smaller than a threshold, and 
their contribution neglected otherwise. 

If f31 = f32 = p, that is if the distribution of the variables f3i is a delta function 
centered on some value ~, the effect.ive potential V(x) = ilx 2 is obtained. There­
fore, this method becomes equivalent. to the so called "regularization technique" 
(Tikhonov and Arsenin, 1977) that has been extensively used to solve ill-posed 
problems, of which the one we have just outlilleJ is a particulal' example (Poggio 
and Girosi, 1990a, 1990b). Suitable choices of dist.ribution P[f3] result in other ef­
fective potentials (for example the potential \I(J:) = vex'), + x 2 can be obtained), 
and the corresponding estimators turn out to be similar to the well known robust 
smoothing splines (Eubank, 1988). 

The functional (7), with the choice expressed by eq. (2), admits a simple physical in­
terpretation. Let us consider for simplicity a function defined on a. one-dimensional 
la.ttice. The value of the function J(xd at. site i is regarded as the position of a 
particle that can move only in the vertical direction. The particle is attracted -
according to a spring-like potential V - towards the data point and the neighboring 
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particles as well. The natUl'al trend of the system will be to mmmuze its total 
energy which, in this scheme, is expressed by the functional (7): the first term is 
associated to the springs connecting the particle to the data point, and the second 
one, being associated to the the springs connecting neighboring particles, enforces 
the smoothness of the final configuration. Notice that the potential energy of the 
springs connecting the particle to the data point is not quadratic, as for the "stan­
dard" springs, resulting this in a non-linear relationship between the force and the 
elongation. The potential energy becomes constant when the elongation is larger 
than a fixed threshold, and the force (which is proportional to the first derivati ve of 
the potential energy) goes to zero. In this sense we can say that the springs "break" 
when we try to stretch them t.oo much (Geiger and Cirosi, 1990). 

3 Negative exanlples 

In many situations, further information about a function may consist in knowing 
that its value at some given point has to be far from a given value (which, in this 
context, can be considered as a "negative example"). 'rVe shall account for the 
presence of negative examples by adding t.o t.he functional (7) a quadratic repulsive 
term for each negative example (for a relat.ed trick, see Kass et aI., 1987). How­
ever, the introduction of such a "repulsive spring" may make the functional (7) 
unbounded from below, because the repulsive terms tend to push the value of the 
function up to infinity. The simplest. way to prevent this occurency is eit.her to 
allow the spring constant to decrease with the increasing elongation, or, in the ex­
treme case, to break at some point. Hence. we can use the same model of nonlinear 
spring of the previous section, and just reverse the sign of the associated poten­
tial. If {(ta, Ya) E Rn x R}f:l is the set of negative examples, and if we define 
.1. a = Ya - f(ta) the functional (7) becomes: 

N K 

H[fJ = L V (.1.;) - L V(.1. a ) + AIIP 1112 
i=l 

4 Solution of the variational problenl 

An exhaustive discussion of the solution of the variational problem associated to 
the functional (7) cannot be given here. \Ve refer t.he reader to the papers of Poggio 
and Cirosi (1990a, 1990b) and Cirosi, Poggio aud Caprile (1990), and just sketch 
the form of the solution. In both cases of unreliable and negat.ive data, it call be 
shown that the solution of the variational problem always has the form 

N I.: 

r(x) = L CiG(X; xd + L O'i¢i(X) (9) 
i=l i=l 

where G is the Green's function of the operator P P (p denoting the adjoint oper­
ator of P), and {¢i(x)}f=l is a basis of functions for the null space of P (usually 
polynomials or low degree) and {cdf:l and {adt'=l are coefficients to be computed. 
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Substituting the expansion (9) in the functional (7), the fUIlction H* (c, a) = H[J*] 
is defined. The vectors c and a can then be found by minimizing the function 
H*(c, a). 

We shall finally notice that the solution (9) has a simple interpretation in terms 
of feedforward networks with one layer of hidden units, of the same class of the 
regularization networks introduced in previous papers (Poggio and Girosi, 1990a, 
1990b). The only difference between these networks and the regularization networks 
previously introduced consists in the functioll that has to be minimized in order to 
find the weights of the network. 

5 Exp erin1ental Results 

In this section we report two examples of the application of these techniques to very 
simple one-dimensional problems. 

5.1 Unreliable data 

The data set consisted of seven examples, randomly ta.ken, within the interval 
[-1,1], from the graph of f( x) = cos(.r). In order to create an outlier in the 
data set, the value of the fOUl'th point. has been sub::;tituted with the value 1.5. The 
Green's function of the problem was a Gaussian of variance (J = 0.:3, the parameter 
f was set to 0.1, the value of the regularization parameter A was 10-2 , and the 
parameters /31 and /32 were set l'espectively to 10.0 and 0.003. With this choice of 
the parameters the effective potential was approximately constant for values of its 
argument larger than 1. In figure (2a) we show the result that is obtained after 
only 10 iterations of gradient descent: the spring of the outlier breaks, and it does 
not influence the solution any more. The "hole" that the solution shows nearby the 
outlier is a combined effect of the fact that t.he variance of the Gaussian Green's 
function is small ((J = 0,3), and of the lack of data next to the outlier itself. 

5.2 Negative exalnples 

Again data to be approximated came from a ra.11l10111 sampling of the function 
f(x) = cos(x), in the interval [-1,1]. The fourth data point was selected as the 
negative example, and the parametel's were set in a way that its spring would break 
when the elongation exceeded the value 1. In figure (2b) we show a result obtained 
with 500 iterations of a stochast.ic gradient descellt a.lgorithm, with a Gaussian 
Green's function of variance (J = 0.4. 

Acknowledgements We thank Cesare Furlanello for useful discussions and for a crit­
ical reading of the manuscript. 
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Figure 2: (a) Approximation in presence of an outlier (the data POillt whose value 
is 1.5) . (b) Approximation in presence of a. negative example. 
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