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Abstract 

We present an algorithm based on reinforcement and state recurrence 
learning techniques to solve control scheduling problems. In particular, we 
have devised a simple learning scheme called "handicapped learning", in 
which the weights of the associative search element are reinforced, either 
positively or negatively, such that the system is forced to move towards the 
desired setpoint in the shortest possible trajectory. To improve the learning 
rate, a variable reinforcement scheme is employed: negative reinforcement 
values are varied depending on whether the failure occurs in handicapped or 
normal mode of operation. Furthermore, to realize a simulated annealing 
scheme for accelerated learning, if the system visits the same failed state 
successively, the negative reinforcement value is increased. In examples 
studied, these learning schemes have demonstrated high learning rates, and 
therefore may prove useful for in-situ learning. 

1 INTRODUCTION 

Reinforcement learning techniques have been applied successfully for simple control 
problems, such as the pole-cart problem [Barto 83, Michie 68, Rosen 88] where the 
goal was to maintain the pole in a quasistable region, but not at specific setpoints. 
However, a large class of continuous control problems require maintaining the 
system at a desired operating point, or setpoint, at a given time. We refer to this 
problem as the basic setpoint control problem [Guha 90], and have shown that 
reinforcement learning can be used, not surprisingly, quite well for such control tasks. 
A more general version of the same problem requires steering the system from some 
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initial or starting state to a desired state or setpoint at specific times without 
knowledge of the dynamics of the system. We therefore wish to examine how 
control scheduling tasks, where the system must be steered through a sequence of 
setpoints at specific times. can be learned. Solving such a control problem without 
explicit modeling of the system or plant can prove to be beneficial in many adaptive 
control tasks. 

To address the control scheduling problem. we have derived a learning algorithm 
called handicapped learning. Handicapped learning uses a nonlinear encoding of the 
state of the system. a new associative reinforcement learning algorithm. and a novel 
reinforcement scheme to explore the control space to meet the scheduling 
constraints. The goal of handicapped learning is to learn the control law necessary to 
steer the system from one setpoint to another. We provide a description of the state 
encoding and associative learning in Section 2. the reinforcement scheme in Section 
3, the experimental results in Section 4, and the conclusions in Section 5. 

2 REINFORCEMENT LEARNING STRATEGY: 
HANDICAPPED LEARNING 

Our earlier work on regulatory control using reinforcement learning [Guha 90] used a 
simple linear coded state representation of the system. However. when considering 
multiple setpoints in a schedule, a linear coding of high-resolution results in a 
combinatorial explosion of states. To avoid this curse of dimensionality, we have 
adopted a simple nonlinear encoding of the state space. We describe this first. 

2.1 STATE ENCODING 

To define the states in which reinforcement must be provided to the controller. we 
set tolerance limits around the desired setpoint. say Xd. If the tolerance of operation 
defined by the level of control sophistication required in the problem is T. then the 
controller is defined to fail if IX(t) - Xdl > T as described in our earlier work in [Guha 
90]. 

The controller must learn to maintain the system within this tolerance window. If the 
range, R. of possible values of the setpoint or control variable X(t) is significantly 
greater than the tolerance window. then the number of states required to define the 
setpoint will be large. We therefore use a nonlinear coding of the control variable. 
Thus, if the level of discrimination within the tolerance window is 2T/n. then the 
number of states required to represent the control variable is (n + 2) where the two 
added states represent the states, (X(t) - Xd) > T and (X(t) - Xd) < -T. With this 
representation scheme. any continuous range of setpoints can be represented with 
very high resolution but without the explosion in state space. 

The above state encoding will be used in our associative reinforcement learning 
algorithm. handicapped learning, which we describe next. 
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2.2 HANDICAPPED LEARNING ALGORITHM 

Our reinforcement learning strategy is derived from the Associative Search 
Element/Adaptive Heuristic Critic (ASE/AHC) algorithm [Barto 83. Anderson 86]. 
We have considered a binary control output. y(t): 

y(t) = f(L wi(t)xi(t) + noise(t» 
i 

(1) 

where f is the thresholding step function. and xi(t). 0 SiS N. is the current decoded 
state. that is. xi(t) = 1 when the system is in the ith state and 0 otherwise. As in 
ASE. the added term noise(t) facilitates stochastic learning. Note that the learning 
algorithm can be easily extended to continuous valued outputs. the nature of the 
continuity is determined by the thresholding function. 

We incorporate two learning heuristics: state recurrence [Rosen 88] and a newly 
introduced heuristic called "handicapped learning". The controller is in the 
handicapped learning mode if a flag. H. is set high. H is defined as follows: 

H = O. if IX(t) - Xdl < T 
= 1. otherwise (2) 

The handicap mode provides a mechanism to modify the reinforcement scheme. In 
this mode the controller is allowed to explore the search space of action sequences. 
to steer to a new setpoint. without "punishment" (negative reinforcement). The mode 
is invoked when the system is at a valid setpoint XI(tI) at time tl. but must be 
steered to the new setpoint X2 outside the tolerance window. that is. IXI - X21 > T. 
at time t2. Since both setpoints are valid operating points. these setpoints as well as 
all points within the possible optimal trajectories from Xl to X2 cannot be deemed to 
be failure states. Further. by following a special reinforcement scheme during the 
handicapped mode. one can enable learning and facilitate the controller to find the 
optimal trajectory to steer the system from one setpoint to another. 

The weight updating rule used during setpoint schedule learning is given by equation 
(3): 

wi(t+I) = wi(t) + (1 rt(t) ei(t) + (12 r2(t) e2i(t) + (13 r3(t) e3i(t) (3) 

where the term (1 rt (t) ei(t) is the basic associative learning component. rt (t) the 
heuristic reinforcement. and ei(t) the eligibility trace of the state xi(t) [Barto 83]. 

The third term in equation (3) is the state recurrence component for reinforcing short 
cycles [Rosen 88]. Here (12 is a constant gain. f2(t) is a positive constant reward. 
and ~i the state recurrence eligibility is defined as follows: 

e2i(t) = ~2 xi(t)y(ti.last)/(~2 + t - ti.last). 
= O. otherwise 

if (t - ti.last) > 1 and H = 0 
(4) 
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where ~2 is a positive constant, and ti.last is the last time the system visited the ith 
state. The eligibility function in equation (4) reinforces shorter cycles more than 
longer cycles, and improve control when the system is within a tolerance window. 

The fourth term in equation (3) is the handicapped learning component. Here (13 is a 
constant gain. r3(t) is a positive constant reward and e3i the handicapped learning 
eligibility is defined as follows: 

e3i(t) = - ~3 xi(t)y(ti.last)/(~3 + t - ti.lasV. if H = 1 
= O. otherwise (5) 

where ~3 is a positive constant. While state recurrence promotes short cycles around 
a desired operating point. handicapped learning forces the controller to move away 
from the current operating point X(t). The system enters the handicapped mode 
whenever it is outside the tolerance window around the desired setpoint. If the initial 
operating point Xi (= X(O» is outside the tolerance window of the desired setpoint 
Xd. 1Xi - Xdl > T. the basic AHC network will always register a failure. This failure 
situation is avoided by invoking the handicapped learning described above. By 
setting absolute upper and lower limits to operating point values. the controller based 
on handicapped learning can learn the correct sequence of actions necessary to steer 
the system to the desired operating point Xd. 

The weight update equations for the critic in the AHC are unchanged from the 
original AHC and we do not list them here. 

3 REINFORCEMENT SCHEMES 

Unlike in previous experiments by other researchers. we have constructed the 
reinforcement values used during learning to be multivalued. and not binary. The 
reinforcement to the critic is negative-both positive and negative reinforcements are 
used. There are two forms of failure that can occur during setpoint control. First. the 
controller can reach the absolute upper or lower limits. Second. there may be a 
timeout failure in the handicapped mode. By design. when the controller is in 
handicapped mode, it is allowed to remain there for only TL. determined by the 
average control step Ay and the error between the current operating point and the 
desired setpoint: 

TL = k Ay (XO - Xd) (6) 

where Xo is the initial setpoint. and k some constant. The negative reinforcement 
provided to the controller is higher if the absolute limits of the operating point is 
reached. 

We have implemented a more interesting reinforcement scheme that is somewhat 
similar to simulated annealing. If the system fails in the same state on two 
successive trials. the negative reinforcement is increased. The primary 
reinforcement function can be defined as follows: 
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rjCk + I) = riCk) - rO, 
= rl, 

if i = j 
if i ":i; j (7) 

where ri(k) is the negative reinforcement provided if the system failed in state i 
during trial k, and rO and rl are constants. 

4 EXPERIMENTS AND RESULTS 

Two different setpoint control experiments have been conducted. The first was the 
basic setpoint control of a continuous stirred tank reactor in which the temperature 
must be held at a desired setpoint. That experiment successfully demonstrated the 
use of reinforcement learning for setpoint control of a highly nonlinear and unstable 
process [Guha 90]. The second recent experiment has been on evaluating the 
handicapped learning strategy for an environmental controller where the controller 
must learn to control the heating system to maintain the ambient temperature 
specified by a time-temperature schedule. Thus, as the external temperature varies, 
the network must adapt the heating (ON) and (OFF) control sequence so as to 
maintain the environment at the desired temperature as quickly as possible. The 
state information describing system is composed of the time interval of the schedule, 
the current heating state (ON/OFF), and the error or the difference between desired 
and current ambient or interior temperature. The heating and cooling rates are 
variable: the heating rate decreases while the cooling rate increases exponentially as 
the exterior temperature falls below the ambient or controlled temperature. 
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Figure 2: Time-Temperature Plot of Controlled Environment at Forty-third Trial 

The experiments on the environmental controller consisted of embedding a daily 
setpoint schedule that contains six setpoints at six specific times. Trails were 
conducted to train the controller. Each trial starts at the beginning of the schedule 
(time = 0). The setpoints typically varied in the range of 55 to 75 degrees. The 
desired tolerance window was 1 degree. The upper and lower limits of the controlled 
temperature were set arbitrarily at 50 and 80 degrees. respectively. Control actions 
were taken every 5 minutes. Learning was monitored by examining how much of the 
schedule was learnt correctly as the number of trials increased. 
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Figure 3: Time-Temperature Plot of Controlled Environment for a Test Run 

Figure 1 shows how the learning progresses with the number of trials. Current results 
show that the learning of the complete schedule (of the six time-temperature pairs) 
requiring 288 control steps. can be accomplished in only 43 trials. (Given binary 



A Reinforcement Learning Variant for Control Scheduling 485 

output, the controller could have in the worst case executed 1086 (- 2288) trials to learn 
the complete schedule.) 

More details on the learning ability using the reinforcement learning strategy are available 
from the time-temperature plots of the trial and test runs in Figures 2 and 3. As the 
learning progresses to the forty-third trial, the controller learns to continuously heat up or 
cool down to the desired temperature (Figure 2). To further test the learning 
generalizations on the schedule, the trained network was tested on a different environment 
where the exterior temperature profile (and the therefore the heating and cooling rates) was 
different from the one used for training. Figure 3 shows the schedule that is maintained. 
Because the controller encounters different cooling rates in the test run, some learning 
still occurs as evident form Figure 3. However, all six setpoints were reached in the 
proper sequence. In essence, this test shows that the controller has generalized on the 
heating and cooling control law , independent of the setpoints and the heating and cooling 
rates. 

5 CONCLUSIONS 

We have developed a new learning strategy based on reinforcement learning that can be 
used to learn setpoint schedules for continuous processes. The experimental results have 
demonstrated good learning performance. However, a number of interesting extensions to 
this work are possible. For instance. the handicapped mode exploration of control can be 
better controlled for faster learning, if more information on the desired or possible 
trajectory is known. Another area of investigation would be the area of state encoding. 
In our approach, the nonlinear encoding of the system state was assumed uniform at 
different regions of the control space. In applications where the system with high 
nonlinearity, different nonlinear coding could be used adaptively to improve the state 
representation. Finally, other formulations of reinforcement learning algorithms, besides 
ASE/AHC, should also be explored. One such possibility is Watkins' Q-Iearning 
[Watkins 89]. 
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