
Constructing Hidden Units 
using Examples and Queries 

Eric B. Baum Kevin J. Lang 
NEC Research Institute 

4 Independence Way 
Princeton, NJ 08540 

ABSTRACT 

While the network loading problem for 2-layer threshold nets is 
NP-hard when learning from examples alone (as with backpropaga­
tion), (Baum, 91) has now proved that a learner can employ queries 
to evade the hidden unit credit assignment problem and PAC-load 
nets with up to four hidden units in polynomial time. Empirical 
tests show that the method can also learn far more complicated 
functions such as randomly generated networks with 200 hidden 
units. The algorithm easily approximates Wieland's 2-spirals func­
tion using a single layer of 50 hidden units, and requires only 30 
minutes of CPU time to learn 200-bit parity to 99.7% accuracy. 

1 Introd uction 

Recent theoretical results (Baum & Haussler, 89) promise good generalization from 
multi-layer feedforward nets that are consistent with sufficiently large training sets. 
Unfortunately, the problem of finding such a net has been proved intractable due 
to the hidden unit credit assignment problem - even for nets containing only 2 
hidden units (Blum & Rivest, 88). While back-propagation works well enough on 
simple problems, its luck runs out on tasks requiring more than a handful of hidden 
units. Consider, for example, Alexis Wielands "2-spirals" mapping from ~2 to 
{O, I}. There are many sets of weights that would cause a 2-50-1 network to be 
consistent with the training set of figure 3a, but backpropagation seems unable to 
find any of them starting from random initial weights. Instead, the procedure drives 
the net into a suboptimal configuration like the one pictured in figure 2b. 

904 



Constructing Hidden Units Using Examples and Queries 90S 

Figure 1: The geometry of query learning. 

In 1984, Valiant proposed a query learning model in which the learner can ask an 
oracle for the output values associated with arbitrary points in the input space. 
In the next section we shall see how this additional source of information can be 
exploited to locate and pin down a network's hidden units one at a time, thus 
avoiding the combinatorial explosion of possible hidden unit configurations which 
can arise when one attempts to learn from examples alone. 

2 How to find a hidden unit using queries 

For now, assume that our task is to build a 2-layer network of binary threshold units 
which computes the same function as an existing "target" network. Our first step 
will be to draw a positive example x+ and a negative example x_ from our training 
set. Because the target net maps these points to different output values, its hidden 
layer representations for the points must also be different, so the hyperplane through 
input space corresponding to one of the net's hidden units must intersect the line 
segment bounded by the two points (see figure 1). We can reduce our uncertainty 
about the location of this intersection point by a factor of 2 by asking the oracle 
for the target net's output at m, the line segment's midpoint. If, for example, m 
is mapped to the same output as x+, then we know that the hidden plane must 
intersect the line segment between x_ and m, and we can then further reduce our 
uncertainty by querying the midpoint of this segment. By performing b of queries 
of this sort, we can determine to within b bits of accuracy the location of a point 
Po that lies on the hidden plane. Assuming that our input space has n dimensions, 
after finding n - 1 more points on this hyperplane we can solve n equations in n 
unknowns to find the weights of the corresponding hidden unit.1 

1 The additional points Pi are obtained by perturbing PO with various small vectors 1r i and then 
diving back to the plane via a search that is slightly more complicated than the bisection method 
by which we found PO. (Baum, 91) describes this search procedure in detail, &8 well &8 a technique 
for verifying that all the points Pi lie on the .ame hidden plane. 



906 Baum and Lang 

Figure 2: A backprop net before and after being trained on the 2-spirals task. 
In these plots over input space, the net's hidden units are shown by lines while its 
output is indicated by grey-level shading. 

3 Can we find all of a network's hidden units? 

Here is the crucial question: now that we have a procedure for finding one hid­
den unit whose hyperplane passes between a given pair of positive and negative 
examples,2 can we discover all of the net's hidden units by invoking this procedure 
on a sequence of such example pairs? If the answer is yes, then we have got a viable 
learning method because the net's output weights can be efficiently computed via 
the linear programming problem that arises from forward-propagating the training 
set through the net's first layer of weights. (Baum, 91) proves that for target nets 
with four or fewer hidden units we can always find enough of them to compute the 
required function. This result is a direct counterpoint to the theorem of (Blum & 
Rivest, 88): by using queries, we can PAC learn in polynomial time small threshold 
nets that would be NP-hard to learn from examples alone. 

However, it is possible for an adversary to construct a larger target net and an 
input distribution such that we may not find enough hidden units to compute the 
target function even by searching between every pair of examples in our training 
set. The problem is that more than one hidden plane can pass between a given pair 
of points, so we could repeatedly encounter some of the hidden units while never 
seeing others. 

2This "positive" and ''negative'' terminology suggests that the target net possesses a single 
output unit, but the method is not actually restricted to this case. 



Constructing Hidden Units Using Examples and Queries 907 

Figure 3: 2-spirals oracle, and net built by query learning. 

Fortunately, the experiments described in the next section suggest that one can 
find most of a net's hidden units in the average case. In fact, we may not even 
need to find all of a network's hidden units in order to achieve good generalization. 
Suppose that one of a network's hidden units is hard to find due to the rarity of 
nearby training points. As long as our test set is drawn from the same distribution 
as the training set, examples that would be misclassified due to the absence of 
this plane will also be rare. Our experiment on learning 200-bit parity illustrates 
this point: only 1/4 of the possible hidden units were needed to achieve 99.7% 
generalization. 

4 Learning random target nets 

Although query learning might fail to discover hidden units in the worse case, the 
following empirical study suggests that the method has good behavior in the average 
case. In each of these learning experiments the target function was computed by a 
2-layer threshold net whose k hidden units were each chosen by passing a hyperplane 
through a set of n points selected from the uniform distribution on the unit n-sphere. 
The output weights of each target net corresponded to a random hyperplane through 
the origin of the unit k-sphere. Our training examples were drawn from the uniform 
distribution on the corners of the unit n-cube and then classified according to the 
target net. 

To establish a performance baseline, we attempted to learn several of these functions 
using backpropagation. For (n = 20, k = 20) we succeeded in training a net to 
97% accuracy in less than a day, but when we increased the size of the problem 
to (n = 100, k = 50) or (n = 200, k = 30), 150 hours of CPU time dumped our 
backprop nets into local minima that accounted for only 90% of the training data. 



908 Baum and Lang 

In contrast, query learning required only 1.5 hours to learn either of the latter 
two functions to 99% accuracy. The method continued to function well when we 
increased the problem size to (n = 200, k = 200). In each of five trials at this 
scale, a check of 104 training pairs revealed 197 or more hidden planes. Because the 
networks were missing a couple of hidden units, their hidden-to-output mappings 
were not quite linearly separable. Nevertheless, by running the percept ron algorithm 
on 100 x k random examples, in each trial we obtained approximate output weights 
w hose generalization was 98% or better. 

5 Learning 200-bit parity 

Because the learning method described above needs to make real-valued queries in 
order to localize a hidden plane, it cannot be used to learn a function that is only 
defined on boolean inputs. Thus, we defined the parity of a real-valued vector to be 
the function computed by the 2-layer parity net of (Rumelhart, Hinton & Williams, 
1986), which has input weights of 1, hidden unit thresholds of ~, ~, ... , n - ~, and 
output weights alternating between 1 and -1. The n parallel hidden planes of this 
net carve the input space into n + 1 diagonal slabs, each of which contains all of the 
binary patterns with a particular number of 1 'so 

After adopting this definition of parity (which agrees with the standard definition on 
boolean inputs), we applied the query learning algorithm to 200-dimensionalinput 
patterns. A search of 30,000 pairs of examples drawn randomly and uniformly 
from the corners of the unit cube revealed 46 of the 200 decision planes of the 
target function. Using approximate output weights computed by the perceptron 
algorithm, we found the nets generalization rate to be 99.7%. If it seems surprising 
that the net could perform so well while lacking so many hidden planes, consider the 
following. The target planes that we did find were the middle ones with thresholds 
near 100, and these are the relevant ones for classifying inputs that contain about 
the same number of 1 's and O's. Because vectors of uniform random bits are unlikely 
to contain many more 1 's than O's or vice versa, we had little chance of stumbling 
across hidden planes with high or low thresholds while learning, but we were also 
unlikely to need them for classifying any given test case. 

6 Function approximation using queries 

Suppose now that our goal in building a threshold net is to approximate an arbitrary 
function rather than to duplicate an existing threshold net. Earlier, we were worried 
about whether we could locate all of a target net's hidden units, but at least we 
knew how many of them there were, and we knew that we had made real progress 
when we found one of them. Now, the hidden units constructed by our algorithm 
are merely tangents to the true decision boundaries of the target fuction, and we do 
not know ahead of time how many such units will be required to construct a decent 
approximation to the function. 

While one could keep adding hidden units to a net until the hidden layer repre­
sentation of the training set becomes linearly separable, the fact that there are 



Constructing Hidden Units Using Examples and Queries 909 

learning additional hidden units train test errors 
algorithm heuristics min max errors min max 

none 90 160 0 70 136 
querIes reject redundant units 65 80 0 47 72 

two-stage construction 49 59 0 15 45 
conjugate gradient backprop 60 avg=9 80 125 

Table 1: 2-spirals performance summary. 

infinitely many of tangents to a given curve can result in the creation of an over­
sized net which generalizes poorly. This problem can be addressed heuristically by 
rejecting new hidden units that are too similar to existing ones. For example, the 
top two rows of the above table summarize the results of 10 learning trials on the 
two-spirals problem with and without such a heuristic.3 By imposing a floor on the 
difference between two hidden units,4 we reduced the size of our nets and the rate 
of generalization errors by 40%. 

The following two-stage heuristic training method resulted in even better networks. 
During the first stage of learning we attempted to create a minimally necessary 
set of hidden units by searching only between training examples that were not 
yet divided by an existing hidden unit. During the second stage of learning we 
tried to increase the separability of our hidden codes by repeatedly computing an 
approximate set of output weights and then searching for hidden units between 
misclassified examples and nearby counterexamples. This heuristic was motivated 
by the observation that examples tend to be misclassified when a nearby piece of 
the target function's decision boundary has not been discovered. Ten trials of this 
method resulted in networks containing an average of just 54 hidden units, and the 
nets committed an average of only 29 mistakes on the test set. An example of a 
network generated by this method is shown in figure 3b. 

For comparison, we made 10 attempts to train a 60-hidden-unit backprop net on 
the 2-spirals problem starting from uniform random weights and using conjugate 
gradient code provided by Steve Nowlan. While these nets had more than enough 
hidden units to compute the required function, not one ofthem succeeded in learning 
the complete training set.s 

3To employ query learning, we defined the oracle function indicated by shading in figure 3a. 
The 194 training points are shown by dots in the figure. Our 576-element test set consisted of 3 
points between each pair of adjacent same-class training points. 

• Specifically, we required a minimum euclidean distance of 0.3 between the weights of two 
hidden units (after first normalizing the weight vectors so that the length of the non-threshold 
part of each vector was 1. 

5lnterestingly, a 2-50-1 backprop net whose initial weights were drawn from a handcrafted 
distribution (hidden units with uniform random positions together with the appropriate output 
weights) came much closer to success than 2-50-1 nets with uniform random initial weights (com­
pare figures 4 and 2). We can sometimes address tough problems with backprop when our prior 
knowledge gives us a head start. 



910 Baum and Lang 

Figure 4: Backprop works better when started near a solution. 

These results illustrate the main point of this paper: the currently prevalent training 
methodology (local optimization of random initial weights) is too weak to solve the 
NP-hard problem of hidden unit deployment. We believe that methods such as 
query learning which avoid the credit assignment problem are essential to the future 

of connectionism. 

References 

E. Baum & D. Haussler. (1989) What size net gives valid generalization? Neural 

Computation 1(1): 151-160. 

E. Baum. (1991) Neural Net Algorithms that Learn in Polynomial Time from Ex­
amples and Queries. IEEE Transactions on Neural Networks 2(1), January, 1991. 

A. Blum & R. L. Rivest. (1988) Training a 3-node neural network is NP-complete. 
In D. S. Touretzky (ed.), Advances in Neural Information Processing Systems 1, 

494-501. San Mateo, CA: Morgan Kaufmann. 

K. Lang & M. Witbrock. (1988) Learning to Tell Two Spirals Apart. Proceedings 
of the 1988 Connectionist Models Summer School, Morgan Kaufmann. 

D. Rumelhart, G. Hinton, & R. Williams. (1986) Learning internal representations 
by error propagation. In D. Rumelhart & J. McClelland (eds.) Parallel Distributed 

Processing, MIT Press. 
L. G. Valiant. (1984) A theory of the learnable. Comm. ACM 27(11): 1134-1142. 


