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ABSTRACT 

A large number of VLSI implementations of neural network models 
have been reported. The diversity of these implementations is 
noteworthy. This paper attempts to put a group of representative 
VLSI implementations in perspective by comparing and contrast­
ing them. Design trade-offs are discussed and some suggestions forthe 
direction of future implementation efforts are made. 

IMPLEMENTATION 

Changing the way information is represented can be beneficial. For example a change 
of representation can make information more compact for storage and transmission. 
Implementation of neural computational models is just the process of changing the 
representation of a neural model from mathmatical symbolism to a physical embodi­
ement for the purpose of shortening the time it takes to process information according 
to the neural model. 

FLEXIBIliTY VS. PERFORMANCE 

Today most neural models are already implemented in silicon VLSI, in the form of pro­
grams running on general purpose digital von Neumann computers. These machines 
are available at low cost and are highly flexible. Their flexibility results from the ease 
with which their programs can be changed. Maximizing flexibility, however, usually 
results in reduced performance. A program will often have to specify several simple op-
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erations to carry out one higher level operation. An example is performing a sequence 
of shifts and adds to accomplish a multiplication. Higher level functions can be directly 
implemented but more hardware is required and that hardware can't be used to execute 
other high level functions. Flexibility is lost. This trade-off between flexibility and 
performance is a fundamen tal issue in computational device design and will be observed 
in the devices reviewed here. 

GROUND RULES 

The neural network devices which will be discussed each consist of a set of what could 
loosely be called "artificial neurons". The artificial neurons typically calculate the inner 
product of an input vector and a stored weight vectort a sum of products of inputs times 
weights. An artificial synapse stores one weight and calculates one product or connec­
tion each time a new input is provided. The basic unit of computation is a "connection" 
and the basic measure of performance is the number of connections the neural network 
can perform per secondt (CPS). The CPS number is directly related to how fast the Chip 
will be able to perform mappings from input to output or recognize input patterns. The 
artificial neurons also include a non-linear thresholding function. 

The comparison done here is restricted to devices which fit within this definition and as 
a result a number of important neural devices such as those which perform early vision 
processing or dynamical processing for optimization are not considered. In the interest 
of brevity only representative state of the art devices are presented. 

COMPARISON CRITERIA 

The criteria for comparison are based on what would be important to a user: Performance, 
Capability, Cost, Flexibility/ Ease of Application. 

In addition to the CPS measure of performance there is also a measure of how fast a Chip 
can learn. How many connection or weight updates the Chip can calculate and store per 
second, (CUPS) is an important performance measure for the chips which have learning 
capability. Three of the nine chips examined have learning on Chip. 

Important capabilities to consider are how big a network the chip can simulate, what 
precision of calculation the chip provides and how independent the Chip is during 
learning. Table 1 provides neuron and synapse counts which indicate the maximum size 
network each Chip can implement. The synaptic function and precision are noted in 
another column and comments about learning capability are also provided. 

An interesting figure of merit is the ratio of CPS to the number of weigh ts. This CPS per 
weigh t ratio will be referred to as the CPSPW. This figure of meri t varies by over a factor 
of 1000 for the 9 chips considered and all have ratios much higher than typical von Neu­
mann machines or the human brain. See the last column of Table 1. The significance 
of this disparity will be discussed later. 



TABLE 1. VLSI Neural Network Implementations 

Synapse 
Connect learning Area 

CPS Type CUPS Algorithm Neurons Synapses Technology Weights Config. Avai l. Price If! CPSPW 

Micro Devices [lJ lb x 16b 
fIl1220 Neural Bit Slice 0.01B Prodx:t NA Off chip 8 2048 ? Ext. Board level Avai l. S45 5100 4883 

H.Graf, D.Henderson,[2J SOB lb x 1-4b NA Off chip 256 SK-32K .9u CMOS No Chip level Board in ? 1760 2.5- 1OM 
AT&T Bell labs Prodx:t 92 

~ 
en 

Alspector, L, Allen, R_[3J O. lB 5b x 5b _lB Boltzmam 32 992 1.2u CMOS No Board level No Reseach 58344 100806 ~ 

Jayakumar, A., Bellcore Prodx:t ~ 

S 
"0 -Arima, Y-, et al [4J 5_68 lb x 6b 1.4B Boltzmam 336 28000 1u CMOS No Chip level No Research 4900 200000 tI> 

Mitsubishi Electric prodx:t S 
tI> 

= ..... 
.24B 128K-2M .8u CMOS Chip level 1400800-3.11( 

~ 
Hammerstran, D., et al,[5J 1.68 1-16b x ManYi 64 No No NA ..... ..... 
Adaptive Solutions 1-16b Back-Prop Multi-Field 0 

nul tiple etc. die = rA 

Agranat, R., et al [6J 0.5B 5b x 5b NA Off chip 256 65536 2u CMOS No Board level No Research 560 7629 
0 
I-h 

Ca. Inst. Tech. prodx:t CCD r"" 
tI> 

Yasunaga, M., et al [n 2.3B 6bx6b NA Off wafer 1152 73700 .8u CMOS No Wafer level No >5101( 410000 31208 8 ..... 
Hitach; Wafer Scale prodx:t Gate Array = (JQ 

8- 5" wafers 
~ 

Tanl inson, M., et al [8J 0_ 1B 4b x 4b NA Off chip 32 1024 1.2u CMOS No Board level 4/91 5900 23000 97656 Q. 
Neural Semiconductor prodx:t ~ 

tI> 

S 
Holler, M.,et al [9] 2B 6b x 6b NA Off chip 64 10240 lu CMOS Non- Chip level Avai l. 5940 2009 195313 

~ Intel Corp. 80170, ETANN product EEPROM Vol. w/Tools 
Brain 100 en 
PC '< 

rA ..... 
tI> 

S 
rA 

"" "" U1 
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In addition to pricing information, what little exists, Table 1 includes the effective 
synapse area and process technology to give some indication of the relative cost of the 
various designs. 

Finally to include something which suggests how flexible the chips are, comments are 
included in Table 1 to indicate whether or not the synaptic function, the learning 
algorithm and the network architecture, of each chip can be changed. Also to be 
considered is how hard it is to set or continuously refresh weights whether analog or 
digital. Analog vs. Digital I/O is a consideration as is availability and development tools. 
Demonstration in real applications would be another indicator of success but, none of 
these chips has yet reached this milestone. 

COMPARISON 

The first device [1 ], from Micro Devices, is a digital neural network which leaves the 
weight memory off Chip. Its eight 16 bit by one bit serial synapse multipliers are multi­
plexed which keeps the effective synapse cell size down. Using a single synaptic 
multiplier per neuron makes the total compute time for a neuron's sum of products de­
pendent on how many inputs are supplied to a neuron. One positive aspect of this 
architecture is that any arbitrary number of inputs per neuron can be processed as long 
as the neuron accumulator is wide enough not to overflow when a worst case large sum 
of products is accumulated. 

The Micro Devices Chip shares this multiplexed synapse approach with the Adaptive 
Solutions Xl [5]and the CCD based design [6] by Agranat et al at Cal-Tech although 
these two chips include weight memory on Chip to attain much better data transfer per­
formance from the weight store to the synaptic processors. The multiplexed synapse 
approach is a good one for reducing the effective synapse size as can be seen by 
comparing the synapse area for these three chips[1,5,6] to those ofthe other Chips. [5,6] 
have the two smallest cell sizes. 

Micro Devices was first to introduce a commercial neural network Chip and developent 
tools. They also have the lowest cost chip available. Its all digital interface makes it easy 
to design in. It's only significant limitations are its low neuron count and the fact that 
it can only accept binary inputs and output binary activations. 

Hitachi's wafer scale neural network[7] designed with gate array technology uses pulse 
stream data representations as does the Neural Semiconductor implementation[8]. 
Pulse stream representations make the implementation of a digital multiplier trivial. It 
becomes just an AND gate. One drawback ofthis approach is that the user must convert 
his input data to uncorrelated pulse streams. The Hitachi design is also interesting be­
cause it is clearly designed to take advantage of the fault tolerant aspect of neural net­
works. The system they have built consists of eight wafers which are very likely to have 
at least several bad die. The automated gate array design used in the Hitachi resulted 
in the largest synapse area at 410,000 u2• 
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Neural Semiconductor's design puts the neuron units on a separate chip from its 
synaptic units. This allows variable width input vectors with a large upper bound. 

The CCD based design from Cal-Tech[6] is most noteworthy for its small cell size, 
560 u2 , and high synapse count which results from the use of multiplexed synaptic 
processors and analog storage in a CCD. The drawback of this type of weight storage 
is that it must be refreshed every few milliseconds at higher temperatures. 

Intel's 80170 [9] uses analog non-volatile weight storage and uses a basic characteristic 
of neural networks to advantage. It uses the adaptation that is going on during learning 
to adapt to variations in the analog circuit computing elements on the chip. This is note­
worthy because it is another example of putting one of the properties of neural networks 
to use to enable a design approach different from conventional digital VLSI design. 

The AT&T Chip reported by Oraf &Henderson [2] has achieved the highest CPS rate, 
80B, of any of the chips. It was designed with handprinted character recognition in mind 
and as a result accepts only binary inputs (black and white). It uses a hybrid circuit design 
approach, digital for inputs and weight storage but analog summation in the form of cur­
rents. This chip is flexible in that its weight precision can be traded offfor higher synapse 
count. 

The last three chips[3,4,5] all have learning on Chip. Two of them use Boltzmann 
learning which has been shown by Hinton [11] to be a form of gradient decent learning 
like Back-Propagation. These are the Bellcore chip[3] reported by J. Alspector, R. 
Allen and A. Jayakumar and the chip reported by Y. Arima et al at Mitsubishi[4]. The 
Misubishi Chip has the most impressive number for learning performance and the 
second best mapping performance at 5.6B CPS. Its one drawback is that the analog 
weights it learns are volatile and must be refreshed. Bellcore's Boltzmann machine uses 
digital weight storage which does not require refresh. However, as you will notice the 
Bellcore synapse cell size is lOX larger due to the use of digital storage and a slightly 
lower density 1.2u technology. 

The Adaptive Solutions chip with programmable learning and programmable synaptic 
function represents the flexibility end of the performance/flexibility trade-off. It is a 
single instruction multiple data path (SIMD) von Neumann machine. Its 64 synaptic 
processors are multiplexed up to 4096 times for eight bit weights making the effective 
synapse cell size very small, 1400 u2 in spite of using digital SRAM forweight storage and 
fully digital synapse processors. This Chip has the second smallest cell size primarily due 
to its multiplexing of the synaptic processing elements and because it multiplexes them 
more times than any of the other designs. 

CONNECTIONS PER SECOND PER WEIGHT (CPSPW) 

The ratio of connections/second per weight can be estimated for biological systems to 
be on the order of 100 assuming one weight is stored in each synapse. If neurons are 
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firing 100 times per second then each of the synapses must be processing pulses about 
100 times per second hence the CPSPW oflOO. This number is clearly related to neuron 
firing rate. Less obvious is how CPSPW might be connected with the precison of the 
biological computing elements and the time frame in which the whole network seeks to 
produce final results. 

Following von Neumann's arguments [12] arithmetical error grows in proportion to the 
number of steps of processing. This is partly due to round off errors and partly due to 
amplification of errors that occur early in the calculations. Biological neurons have 
limited preCision due to their analog nature. If their calculations are accurate to within 
1 % and they are involved in a calculation that involves propagation of results through 
100 neurons in sequence then the accumulated error could be as high as 100% meaning 
that the answer could be competely wrong. Any further calculations using this result 
would be useless. In other words, a 100 step calculation is the longest calculation you 
might expect a biological system to attempt to do because of its limited preciSion. Since 
the time frame that biological systems are typically concerned with is around 1 second 
one might expect to see these biological systems executing about 100 operations for each 
processing element in this interval. This appears to be the case. Executing any more op­
erations than this would produce meaningless results due to the accumulation of nu­
merical error. 

A rule of thumb which summarizes the suggested relationship between CPSPW, 
precision and the time frame of interest would be: Thenumberofconnectionsexecuted 
per weight in the intervaIofinterest should be equaIto the dynamic range of the weights. The 
dynamiC range of a weight is just the inverse of its precision or the maximum possible 
weight value minus the minimum weight value divided by the smallest increment in a 
weight which has significance. 

Motor control, vision, handwriting and speech recognition tasks all fall within the 
"human time frame". The rule of thumb suggests that if neural network implementa­
tions with limited precision weights are used to solve these problems then these systems 
are likely to work best with the same CPSPW as biological neural systems, around 100. 
Since all of the neural network implementations reviewed here have CPSPW's well 
above 100 we might conclude that they are not optimal for these human time frame 
tasks. They don't have enough weights relative to their processing power. Standard von 
Neumann computers have CPSPW's which are much lower than those of biological sys­
tems. The number of operations per second per word of memory in a typical von 
Neumann machine is around 1. Von Neumann machines today don't have enough proc­
essing power relative to their memory size to be optimal for executing neural network 
solutions to problems in the human time frame. 

For systems where results are sought in a time frame shorter than the human time frame 
a higher CPSPW should be used according to the rule of thumb. All of the designs 
reviewed here have a CPSPW much higher than 100. See the right most column of 
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Table-I. The AT&T chip [2] has a CPSPW ratio in the millions and many of the 
chips[3,4,7,8,9] have a ratio around 100,000. Chips with low CPSPW's are the same 
chips that multiplex the synaptic processors [1,5,6]. They can store more weights 
because they don't replicate the synaptic processor for every weight. Their processing 
rates ar~ lowered which also lowers their CPSPWbecause they have fewer synaptic proc­
essors working simultaneously. This is not particularly desirable but results in a better 
balance between processing power and memory for tasks which don't need to be done 
any faster than in the human time frame. 

FUTURE DIRECTION 

Von Neumann machines with their high degree of flexibility will continue to be criti­
cal in the near term as neural models continue their rapid evolution. Multiprocessor 
(> 10) von Neumann machines optimized for neural type calculations are sorely needed. 
One such device [5] is already on the horizon. Hennessy and Patterson's quantitative 
approach [10] to computer design would be appropriate. 

Neural network implementations with more weights are needed for making further 
progress in solving the difficult "human time domain" problems of speech and vision. 
A 1B CPS machine with 10M weights is needed.. Devices which multiplex the synap­
tic processing elements appear to be the best candidates for accomplishing this goal. 
The challenge here is to keep the bandwidth high even after the weight cache is moved 
off Chip. 

Using DRAM or "floating gate" memory cells which normally store digital information 
to store analog information instead in the same space is an approach which can be used 
in conjunction with multiplexed analog synapse processors to achieve a 6-8X improve­
ment in the number of weights per synaptic processor with little penalty in die area. This 
general direction is largely unexplored except for the CCD implementation done by 
Agranat et al. [6]. 

VLSI implementations with fully parallel processing synaptic arrays represent a new 
computational capability; higher performance than can be achieved by any other means 
with given power and space. The availability ofthis new computing capability will open 
up new applications but, will likely take time. The majority of chips reviewed in this 
paper fall into this category [2,3,4,7,8,9). 

SUMMARY 

The VLSI implementations to date are mostly high performance devices with limited 
memory. An image of slugs crawling at the speed of sound comes to mind. There will 
be applications for these "supersonic slugs", but, they are unlikely to make VLSI neural 
networks a big business any time soon. Implementations with more flexibility or more 
storage relative to processing power seem to be needed. 
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