Language Induction by Phase Transition
in Dynamical Recognizers

Jordan B. Pollack
Laboratory for Al Research
The Ohio State University
Columbus, OH 43210
pollack@cis.ohio-state.edu

Abstract

A higher order recurrent neural network architecture learns to recognize and
generate languages after being "trained” on categorized exemplars. Studying
these networks from the perspective of dynamical systems yields two
interesting discoveries: First, a longitudinal examination of the learning
process illustrates a new form of mechanical inference: Induction by phase
transition. A small weight adjustment causes a "bifurcation” in the limit
behavior of the network. This phase transition corresponds to the onset of the
network’s capacity for generalizing to arbitrary-length strings. Second, a
study of the automata resulting from the acquisition of previously published
languages indicates that while the architecture is NOT guaranteed to find a
minimal finite automata consistent with the given exemplars, which is an
NP-Hard problem, the architecture does appear capable of generating non-
regular languages by exploiting fractal and chaotic dynamics. I end the paper
with a hypothesis relating linguistic generative capacity to the behavioral
regimes of non-linear dynamical systems.

1 Introduction

I expose a recurrent high-order back-propagation network to both positive and negative
examples of boolean strings, and report that although the network does not find the
minimal-description finite state automata for the languages (which is NP-Hard (Angluin,
1978)), it does induction in a novel and interesting fashion, and searches through a
hypothesis space which, theoretically, is not constrained to machines of finite state. These
results are of import to many related neural models currently under development, e.g.
(Elman, 1990; Giles et al., 1990; Servan-Schreiber et al., 1989), and relates ultimately to
the question of how linguistic capacity can arise in nature.

Although the transitions among states in a finite-state automata are usually thought of as
being fully specified by a table, a transition function can also be specified as a
mathematical function of the current state and the input. It is known from (McCulloch &
Pitts, 1943) that even the most elementary modeling assumptions yield finite-state

619

620

Pollack

control, and it is worth reiterating that any network with the capacity to compute arbitrary
boolean functions (say, as logical sums of products) lapedes farber how nets], white
hornik .], can be used recurrently to implement arbitrary finite state machines.

From a different point of view, a recurrent network with a state evolving across K units
can be considered a k-dimensional discrete-time continuous-space dynamical gystem,
with a precise initial condition, z;(0), and a state space in Z, a subspace of R™. The
governing function, F, is parameterized by a set of weights, W, and merely computes the
next state from the current state and input, y;(z), a finite sequence of patterns
representing tokens from some alphabet Z:

2 (1+1) = Fyy(24(2),y;(1))

If we view one of the dimensions of this system, say z,, as an "acceptance” dimension,
we can define the language accepted by such a Dynamical Recognizer as all strings of
input tokens evolved from the precise initial state for which the accepting dimension of
the state is above a certain threshold. In network terms, one output unit would be
subjected to a threshold test after processing a sequence of input patterns.

The first question to ask is how can such a dynamical system be constructed, or taught, to
accept a particular language? The weights in the network, individually, do not correspond
directly to graph transitions or to phrase structure rules. The second question to ask is
what sort of generative power can be achieved by such systems?

2 The Model

To begin to answer the question of learning, I now present and elaborate upon my earlier
work on Cascaded Networks (Pollack, 1987), which were used in a recurrent fashion to
learn parity, depth-limited parenthesis balancing, and to map between word sequences
and proposition representations (Pollack, 1990a). A Cascaded Network is a well-
controlled higher-order connectionist architecture to which the back-propagation
technique of weight adjustment (Rumelhart et al., 1986) can be applied. Basically, it
consists of two subnetworks: The function network is a standard feed-forward network,
with or without hidden layers. However, the weights are dynamically computed by the
linear context network, whose outputs are mapped in a 1:1 fashion to the weights of the
function net. Thus the input pattern to the context network is used to "multiplex" the the
function computed, which can result in simpler learning tasks.

When the outputs of the function network are used as inputs to context network, a system
can be built which learns to produce specific outputs for variable-length sequences of
inputs. Because of the multiplicative connections, each input is, in effect, processed by a
different function. Given an initial context, z,(0), and a sequence of inputs,
yj(?), t=1...n, the network computes a sequence of state vectors, z;(¢), t=1...n by
dynamically changing the set of weights, w;;(#). Without hidden units the forward pass
computation is:

w;i(t) = ? Wijk zx(t=1)

zi(1) = g (X wij(®) y; (1)
j

Language Induction by Phase Transition in Dynamical Recognizers

where g is the usual sigmoid function used in back-propagation system.

In previous work, I assumed that a teacher could supply a consistent and generalizable
desired-state for each member of a large set of strings, which was a significant
overconstraint. In learning a two-state machine like parity, this did not matter, as the 1-bit
state fully determines the output. However, for the case of a higher-dimensional system,
we know what the final output of a system should be, but we don’t care what its state
should be along the way.

Jordan (1986) showed how recurrent back-propagation networks could be trained with
"don’t care" conditions. If there is no specific preference for the value of an output unit
for a particular training example, simply consider the error term for that unit to be 0.
This will work, as long as that same unit receives feedback from other examples. When
the don’t-cares line up, the weights to those units will never change. My solution to this
problem involves a backspace, unrolling the loop only once: After propagating the errors
determined on only a subset of the weights from the "acceptance” unit z,:

oE
0z, i (n)

=(24(n) —d,) 25(n) (1 = 2z4(n)) y;(n)

E __0E
OWgjik OWgj(n)

z(n-1)

The error on the remainder of the weights (, I #a) is calculated using values

8w,-jk
from the penultimate time step:
oE oE oE
0z;(n—1) h;? OWgjx OWgj(n)
% __E .
ow;j(n—1) ~ 9z;(n—1) yj(n=1)
oE oE 2,(n—2)

aw,-jk - Bw;j(n —1)
This is done, in batch (epoch) style, for a set of examples of varying lengths.
3 Induction as Phase Transition

In initial studies of learning the simple regular language of odd parity, I expected the
recognizer to merely implement "exclusive or” with a feedback link. It turns out that this
is not quite enough. Because termination of back-propagation is usually defined as a 20%
error (e.g. logical "1" is above 0.8) recurrent use of this logic tends to a limit point. In
other words, mere separation of the exemplars is no guarantee that the network can
recognize parity in the limit. Nevertheless, this is indeed possible as illustrated by
illustrated below. In order to test the limit behavior of a recognizer, we can observe its
response to a very long "characteristic string”. For odd parity, the string 1* requires an
alternation of responses.

A small cascaded network composed of a 1-2 function net and a 2-6 context net

621

622

Pollack

(requiring 18 weights) was was trained on odd parity of a small set of strings up to length
5. At each epoch, the weights in the network were saved in a file. Subsequently, each
configuration was tested in its response to the first 25 characteristic strings. In figure 1,
each vertical column, corresponding to an epoch, contains 25 points between 0 and 1.
Initially, all strings longer than length 1 are not distinguished. From cycle 60-80, the
network is improving at separating finite strings. At cycle 85, the network undergoes a
"bifurcation,” where the small change in weights of a single epoch leads to a phase
transition from a limit point to a limit c:.rcle.l This phase transition is so "adaptive” to the
classification task that the network rapidly exploits it.

50 100 150 200

Figure 1: A bifurcation diagram showing the response of the parity-leamer to the first
25 characteristic strings over 200 epochs of training,

I wish to stress that this is a new and very interesting form of mechanical induction, and
reveals that with the proper perspective, non-linear connectionist networks are capable of
much more complex behavior than hill-climbing. Before the phase transition, the
machine is in principle not capable of performing the serial parity task; after the phase
transition it is. The similarity of learning through a "flash of insight" to biological change
through a "punctuated” evolution is much more than coincidence.

4 Benchmarking Results
Tomita (1982) performed elegant experiments in inducing finite automata from positive

and negative evidence using hillclimbing in the space of 9-state automata. Each case was
defined by two sets of boolean strings, accepted by and rejected by the regular languages

! For the simple low dimensional dynamical systems usually studied, the "knob” or control parameter for
such a bifurcation diagram is a scalar variable; here the control parameter is the entire 32-D vector of
weights in the network, and back-propagation tums the knob!

Language Induction by Phase Transition in Dynamical Recognizers

listed below.
1*
(10)*
no odd zero strings after odd 1 strings
no triples of zeros
pairwise, an even sum of 01’s and 10’s.
number of 1’s - number of 0’s = 3n
0*1*0*1*

Rather than inventing my own training data, or sampling these languages for a well-
formed training set I ran all 7 Tomita training environments as given, on a sequential
cascaded network of a 1-input 4-output function network (with bias, 8 weights to set) and
a 3-input 8-output context network with bias, using a learning rate was of 0.3 and a
momentum to 0.7. Termination was when all accepted strings returned output bits above
0.8 and rejected strings below 0.2.

e e N I SN LT 6 I

Of Tomita’s 7 cases, all but cases #2 and #6 converged without a problem in several
hundred epochs. Case 2 would not converge, and kept treating a negative case as correct
because of the difficulty for my architecture to induce a "trap" state; I had to modify the
training set (by added reject strings 110 and 11010) in order to overcome this problem.2
Case 6 took several restarts and thousands of cycles to converge, cause unknown. The
complete experimental data is available in a longer report (Pollack, 1990b).

Because the states are "in a box" of low dimension,3 we can view these machines
graphically to gain some understanding of how the state space is being arranged. Based
upon some intitial studies of parity, my initial hypothesis was that a set of clusters would
be found, organized in some geometric fashion: i.e. an embedding of a finite state
machine into a finite dimensional geometry such that each token’s transitions would
correspond to a simple transformation of space. Graphs of the states visited by all
possible inputs up to length 10, for the 7 Tomita test cases are shown in figure 2. Each
figure contains 2048 points, but often they overlap.

The images (a) and (d) are what were expected, clumps of points which closely map to
states of equivalent FSA’s. Images (b) and (e) have limit "ravine’s" which can each be
considered states as well.

§ Discussion

However, the state spaces, (c), (f), and (g) of the dynamical recognizers for Tomita cases
3, 6, and 7, are interesting, because, theoretically, they are infinite state machines, where
the states are not arbitrary or random, requiring an infinite table of transitions, but are
constrained in a powerful way by mathematical principle. In other words, the complexity
is in the dynamics, not in the specifications (weights).

In thinking about such a principle, consider other systems in which extreme observed
complexity emerges from algorithmic simplicity plus computational power. It is

21t can be argued that other FSA inducing methods get around this problem by presupposing rather than
leamning trap states.

* One reason I have succeeded in such low dimensional induction is because my architecture is a Mealy,
rather than Moore Machine (Lee Giles, Personal Communication)

623

624 Pollack

A
C
E
Figure 2: Images of the state-spaces
G for the 7 benchmark cases. Each
image contains 2048 points

corresponding to the states of all
boolean strings up to length 10.

Language Induction by Phase Transition in Dynamical Recognizers

interesting to note that by eliminating the sigmoid and commuting the y; and z; terms,
the forward equation for higher order recurrent networks with is identical to the generator
of an Iterated Function System (IFS) (Barnsley et al., 1985). Thus, my figures of state-
spaces, which emerge from the projection of £ into Z, are of the same class of
mathematical object as Bamsley’s fractal attractors (e.g. the widely reproduced fern).
Using the method of (Grassberger & Procaccia, 1983), the correlation dimension of the
attractor in Figure 2(g) was found to be about 1.4.

The link between work in complex dynamical systems and neural networks is well-
established both on the neurobiological level (Skarda & Freeman, 1987) and on the
mathematical level (Derrida & Meir, 1988; Huberman & Hogg, 1987; Kurten, 1987;
Smolensky, 1986). This paper expands a theme from an earlier proposal to link them at
the "cognitive" level (Pollack, 1989).

There is an interesting formal question, which has been brought out in the work of
(Wolfram, 1984) and others on the universality of cellular automata, and more recently in
the work of (Crutchfield & Young, 1989) on the descriptive complexity of bifurcating
systems: What is the relationship between complex dynamics (of neural systems) and
traditional measures of computational complexity? From this work and other supporting
evidence, I venture the following hypothesis:

The state-space limit of a dynamical recognizer, as >* 5%, is an Attractor,
which is cut by a threshold (or similar decision) function. The complexity of
the language recognized is regular if the cut falls between disjoint limit
points or cycles, context-free if it cuts a "self-similar” (recursive) region, and
context-sensitive if it cuts a "chaotic" (pseudo-random) region.

Acknowledgements

This research has been partially supported by the Office of Naval Research under
grant N00014-89-J-1200.

References

Angluin, D. (1978). On the complexity of minimum inference of regular sets.
Information and Control, 39, 337-350.

Bamsley, M. F., Ervin, V., Hardin, D. & Lancaster, J. (1985). Solution of an
inverse problem for fractals and other sets. Proceedings of the National Academy
of Science, 83.

Crutchfield, J. P & Young, K. (1989). Computation at the Onset of Chaos. In W.
Zurek, (Ed.), Complexity, Entropy and the Physics of INformation. Reading, MA:
Addison-Wesley.

Derrida, B. & Meir, R. (1988). Chaotic behavior of a layered neural network.
Phys. Rev. A, 38.

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14, 179-212.
Giles, C.L., Sun, G. Z., Chen, H. H., Lee, Y. C. & Chen, D. (1990). Higher Order
Recurrent Networks and Grammatical Inference. In D. Touretzky, (Ed.),

Advances in Neural Information Processing Systems. Los Gatos, CA: Morgan
Kaufman.

625

626

Pollack

Grassberger, P. & Procaccia, 1. (1983). Measuring the Strangeness of Strange
Attractors. Physica, 9D, 189-208.

Huberman, B. A. & Hogg, T. (1987). Phase Transitions in Artificial Intelligence
Systems. Artificial Intelligence, 33, 155-172.

Jordan, M. I. (1986). Serial Order: A Parallel Distributed Processing Approach.
ICS report 8608, La Jolla: Institute for Cognitive Science, UCSD.

Kurten, K. E. (1987). Phase transitions in quasirandom neural networks. In
Institute of Electrical and Electronics Engineers First International Conference on
Neural Networks. San Diego, 11-197-20.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

Pollack, J. B. (1987). Cascaded Back Propagation on Dynamic Connectionist
Networks. In Proceedings of the Ninth Conference of the Cognitive Science
Society. Seattle, 391-404.

Pollack, J. B. (1989). Implications of Recursive Distributed Representations. In
D. Touretzky, (Ed.), Advances in Neural Information Processing Systems. Los
Gatos, CA: Morgan Kaufman.

Pollack, J. B. (1990). Recursive Distributed Representation. Ariificial
Intelligence, 46, 77-105.

Pollack, J. B. (1990). The Induction of Dynamical Recognizers. Tech Report 90-
JP-Automata, Columbus, OH 43210: LAIR, Ohio State University.

Rumelhart, D. E., Hinton, G. & Williams, R. (1986). Leaming Internal
Representations through Error Propagation. In D. E. Rumelhart, J. L. McClelland
& the PDP research Group, (Eds.), Parallel Distributed Processing: Experiments in
the Microstructure of Cognition, Vol. 1. Cambridge: MIT Press.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L (1989). Encoding
Sequential Structure in Simple Recurrent Networks. In D. Touretzky, (Ed.),
Advances in Neural Information Processing Systems. Los Gatos, CA: Morgan
Kaufman.

Skarda, C. A. & Freeman, W. J. (1987). How brains make chaos. Brain &
Behavioral Science, 10.

Smolensky, P. (1986). Information Processing in Dynamical Systems:
Foundations of Harmony Theory. In D. E. Rumelhart, J. L. McClelland & the PDP
research Group, (Eds.), Parallel Distributed Processing: Experiments in the
Microstructure of Cognition, Vol. 1. Cambridge: MIT Press.

Tomita, M. (1982). Dynamic construction of finite-state automata from examples
using hill-climbing. In Proceedings of the Fourth Annual Cognitive Science
Conference. Ann Arbor, MI, 105-108.

Wolfram, S. (1984). Universality and Complexity in Cellular Automata. Physica,
10D, 1-35.

