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Abstract 

In this paper, after some introductory remarks into the classification prob­
lem as considered in various research communities, and some discussions 
concerning some of the reasons for ascertaining the performances of the 
three chosen algorithms, viz., CART (Classification and Regression Tree), 
C4.5 (one of the more recent versions of a popular induction tree tech­
nique known as ID3), and a multi-layer perceptron (MLP), it is proposed 
to compare the performances of these algorithms under two criteria: classi­
fication and generalisation. It is found that, in general, the MLP has better 
classification and generalisation accuracies compared with the other two 
algorithms. 

1 Introduction 

Classification of data into categories has been pursued by a number of research 
communities, viz., applied statistics, knowledge acquisition, neural networks. 

In applied statistics, there are a number of techniques, e.g., clustering algorithms 
(see e.g., Hartigan), CART (Classification and Regression Trees, see e.g., Breiman 
et al). Clustering algorithms are used when the underlying data naturally fall into a 
number of groups, the distance among groups are measured by various metrics [Har­
tigan]. CART [Breiman, et all has been very popular among applied statisticians. 
It assumes that the underlying data can be separated into categories, the decision 
boundaries can either be parallel to the axis or they can be a linear combination 
of these axes!. Under certain assumptions on the input data and their associated 

lIn CART, and C4.5, the axes are the same as the input features 
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output categories, its properties can be proved rigorously [Breiman et al]. The way 
in which CART organises its data set is quite sophisticated. For example, it grows 
a number of decision trees by a cross validation method. 

Knowledge acquisition is an important topic in expert systems studies, see e.g., 
Charniak, McDermott. In this case, one is presented with a subset of input output 
examples drawn from the set of all possible input output examples exhibited by the 
underlying system. The problem is how to "distill" a set of rules describing the set 
of input output examples. The rules are often expressed in the form of "if statement 
1, then statement 2, else statement 3". Once this set of rules is obtained, it can 
be used in a knowledge base for inference or for consulting purposes. It is trivial 
to observe that the rules can be represented in the form of a binary tree structure. 
In the process of building this binary tree, the knowledge acquisition system must 
learn about the set of input output examples. Often this problem is pursued in the 
machine learning community, see e.g., Michalski et al. 

One of the most popular induction tree algorithms is known as ID3, or its later 
variants, known as C4 (see e.g., Quinlan, Utgoff). There has not been any explicit 
mention of the underlying assumptions on the data. However, it can be postulated 
that for an induction tree technqiue to work efficiently, there must be some under­
lying assumptions on the data set considered. By analogy with CART, it can be 
observed that an important underlying assumption must be that the data can be 
divided into categories, the decision boundaries must be parallel to the axes (i.e., it 
does not find a linear combination of the underlying axes to form a possible decision 
boundary). In contrast to CART, and similar technqiues, it does not yet have a 
rigorous theoretical basis. Its learning algorithm, and the way in which it organises 
the data set are somewhat different from CART. 

Recently, there is considerable activities in the study of yet another classification 
method, known generally as an artificial neural network (ANN) approach (see e.g., 
Hecht-Nielson). In this approach, the idea is to use a system consisting of artifi­
cial neurons with very simple internal dynamics, interconnected to each other for 
modelling a given set of input output examples. In this approach, one selects an 
architecture of interconnection of artificial neurons, and a learning algorithm for 
finding the unknown parameters in the architecture. A particular popular ANN ar­
chitecture is known as a multi-layer perceptron (MLP). In this architecture, signal 
travels in only one direction, i.e., there is no feedback from the output to the input. 
A simple version of this architecture, consisting of only input and output layers 
of neurons was popularised by Rosenblatt in the 1950's and 1960's. An improved 
version incorporating possibly more than one layer of hidden layer neurons has been 
used in the more recent past. A learning algorithm for finding the set of unknown 
parameters in this architecture while minimising a least square criterion is known 
as a back propagation algorithm. (see e.g., Rumelhart, McClelland). 

There have been much analysis recently in understanding why a MLP can be used 
in classifying given input output examples, and what underlying assumptions are 
required (see e.g., Cybenko, Hornik et al). It can be proved that the MLP can 
be used to approximate any given nonlinear input output mapping given certain 
not too restrictive assumptions on the mapping, and the underlying input output 
variables. 
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Given that the three methods mentioned above, viz., CART, C4.5 (the latest version 
of the C4 Induction Tree methodology), and MLP, all enjoy popularity in their 
respective research communities, and that they all perform classification based on 
a given set of input output examples, a natural question to ask is: how do they 
perform as compared with one another. 

There might be some objections to why a comparison among these algorithms is 
necessary, since each is designed to operate under some predetermined conditions. 
Secondly, even if it is shown that a particular algorithm performs better for a set of 
particular examples, there is no guarantee that the algorithm will perform better 
under a different set of circumstances. Thus, this may throw some doubt on the 
desirability of making a comparison among these algorithms. 

As indicated above, each algorithm has some underlying assumptions on the con­
struction of a data model, whether these assumptions are made explicit or not. In 
a practical problem, e.g., power system forecasting [Atlas et al] it is not possible 
to determine the underlying assumptions in the data. But on an artificially gen­
erated example, it is possible to constrain the data so that they would have the 
desirable characteristics. From this, it is possible to at least make some qualitative 
statements concerning the algorithms. These qualitative statements may guide a 
practitioner to watch out for possible pitfalls in applying a particular algorithm to 
practical problems. Hence, it is worthwhile to carry out comparison studies. 

The comparison question is not new. In fact there are already a number of stud­
ies carried out to compare the performances of some of or all three algorithms 
mentioned2 . For example, Atlas et al compared the performances of CART and 
MLP. In addition they have considered the performances of these two algorithms to 
a practical problem, viz., the power system forecasting. Dietterich et al compared 
the performances of ID3 and MLP, and have applied them to the Text to Speech 
mapping problem. In general, their conclusions are that the MLP is more accurate 
in performing generalisation on unseen examples, while the ID3 or CART is much 
faster in performing the classficiation task. 

In this paper, we will consider the performances of all three algorithms, viz., CART, 
C4.5 and MLP on two criteria: 

• Classification capabilities 

• Generalisation capabilities 

In order to ascertain how these algorithms will perform, we have chosen to study 
their performances using a closed set of input output examples. In this aspect, we 
have chosen a version of the Penzias example, first considered by Denker et al. This 
class of problems has been shown to require at least one hidden layer in a MLP 
architecture, indicating that the relationship between the input and output is non­
linear. Secondly, the problem complexity depends on the number of input neurons 
(in Cart and C4.5, input features). Hence it is possible to test the algorithms using 
a progressively complex set of examples. 

We have chosen to compare the algorithms under the two critieria because of the 

2Both Atlas et. al, and DieUrich et al were brought to our attention during the confer­
enCe. Hence some of their conclusions were only communicat.ed to us at that time 
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fact that some of them, at least, in the case of CART, were designed for classi­
fication purposes. It was not originally intended for generalisation purposes. By 
generalisation, we mean that the trained system is used to predict the categories of 
unseen examples when only the input variables are given. The predicted categories 
are then compared with the true categories to ascertain how well the trained system 
has performed. 

The separate comparison is necessary because of the fact that classification and 
generalisation are rather different. In classification studies, the main purpose is to 
train a system to classify the given set of input output examples. The characteristics 
are: good model of the data; good accuracy in classifying the given set of examples. 
In generalisation, the main goal is to provide a good accuracy of prediction of output 
categories on the set of unseen examples. It does not matter much if the results of 
applying the trained data model to the training data set are less accurate. 

An important point to note is that all the algorithms have a number of parameters 
or procedures which allow them to perform better. For example, it is possible to 
vary the a priori assumption on the occurrence of different output categories in 
CART, while to perform a similar task in C4.5 or MLP is rather more difficult. It 
is possible to train the MLP by ever increasing iterations until the error is small, 
given sufficient number of hidden layer neurons. On the other hand, in C4.5, or 
CART, the number of iterations is not an externally adjustable parameter. 

In order to avoid pitfalls like these, as well as to avoid the criticism of favoring 
one algorithm over against another, the results presented here have not consciously 
tuned to give the best performance. For example, even though from observations, 
we know that the distribution of different output categories is uneven, we have 
not made any adjustments to the a priori probabilities in running CART. We will 
assume that the output categories occur with equal prior probabilities. We have 
not tuned the number of hidden layer neurons in the MLP, except we have taken a 
particular number which has been used by others. We have not tuned the learning 
rate, nor the momentum rate in the MLP except just a nominal default value which 
appears to work for other examples. We have not tuned the C4.5 nor CART apart 
from using the default values. Hopefully by doing this, the comparison will appear 
fairer. 

The structure of the paper is as follows: in section 2, we will describe the classifi­
cation results, while in section 3 we will present generalisation results. 

2 Comparison of classification performances 

Before we present the results of comparing the performances of the algorithms, we 
will give a brief description of the testing example used. This example is known as a 
clump example in Denker et aI, while in Maxwell et al it is refered as the contiguity 
example (see [Webb, Lowe]). 

There are N input features, each feature can take only the values of 0 or 1. Thus 
there are altogether 2N examples. The output class of a particular input feature 
vector is the number of clumps involving l's in the input feature vector. Thus, for 
example, if the input feature vector is 00110100, then this is in class 2 as there are 
two distinct clumps of 1 's in the input features. Hence it is possible to generate 
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the closed set of all input output examples given a particular value of N. For 
convenience, we will call this an Nth order Penzias example. In our case considered 
here, we have used N = 8, i.e., there are 256 examples in the entire set. The input 
features are binary equivalent of their ordinal numbers. For example, example 10 
is 00001010. This allows us to denote any sample within the set more conveniently. 
The distribution of the output classes are as follows: 

class total number 
1 37 
2 126 
3 84 
4 9 

For classification purposes, we use all 256 examples as both the training and testing 
data sets. The following table summarises the classificiation results. 

name # of errors accur % 
cart 96 0.625 
c4.5 105 0.59 
mlp1 117 0.54 
mlp2 47 0.82 

where mlp1 and mlp2 are the values related to the MLP when it has run for 10000 
iterations and 100000 iterations respectively. We have run the MLP in the fol­
lowing fashion: we run it 10000 times and then in steps of 10000 iterations but 
at the beginning of each 10000 iterations it is run with a different initial param­
eter estimate. In this way, we can ensure that the MLP will not fall into a local 
minimum. Secondly, we can observe how the MLP accuracies will improve with 
increasing number of iterations. We found that in general, the MLP converges in 
about 20000 iterations. After that the number of iterations the results do not im­
prove by a significant amount. In addition, becasue of the way in which we run the 
experiemnt the convergence would be closer to the average convergence rather than 
the convergence for a particular initial condition. 

The parameter values used in running the experiments are as follows: In the MLP, 
both the learning rate and the momentum are set at 0.1. The architeture used 
is: 8 input neurons, 5 hidden layer neurons, and 4 output neurons. In CART, the 
prior probability is set to be equi-probable. The pruning is performed when the 
probability of the leaf node is equal 0.5. In C4.5, all the default values are used. 

We have also examined the ways in which each algorithm predicts the output cat­
egories. We found that none of the algorithms ever predict an output category of 
4. This is interesting in that the output category 4 occurs only 9 times out of a 
total possible of 256. Thus each algorithm, even though it mayor may not be able 
to adjust the prior probability of the output categories, has made an implicit as­
sumption of equal prior probability. This leads to the non occurrence of prediction 
of category 4 as it is the least frequent occurred one. 

Secondly, all algorithms have a default prediction. For example, in CART, the 
default is class 2, being the most frequently occurred output category in the training 
examples, while in the case of C4.5, the default is determined by the algorithm. On 
the other hand, in the cases of CART, or MLP, it is not clear how the default cases 
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are determined. 

Thirdly, the algorithms make mistaken predictions at different places. For example, 
for sample 1, C4.5 makes the wrong prediction of category 3 while MLP makes the 
wrong prediction of 2, and CART makes the correct prediction. For sample 9, both 
CART and C4.5 make a wrong prediction, while MLP makes the correct prediction. 

3 Comparison of generalisation performances 

We have used the same set of input output examples generated by an 8th order 
Penzias example. For testing the generalisation capabilties, We have used the first 
200 examples as the training vector set, and the rest of the vectors in the testing 
data set. 

The results are summarised in the following table: 

name 
cart 
c4.5 
mlpl 
mlp2 

training 
# of errors 
84 
97 
100 
50 

testing 
accur % # of errors 
0.58 34 
51.5 25 
50 28 
75 25 

accur % 
39.3 
55.4 
50 
55.4 

It is noted that the generalisation accuracy of the MLP is better than CART, and 
is comparable to C4.5. 

We have also examined closely the mistakes made by the algorithms as well as the 
default predictions. In this case, the comments made in section 2 also appear to be 
true. 

4 Concl usions 

In this paper, we considered three classification algorithms, viz., CART, C4.5, and 
MLP. We compared their performance both in terms of classification, and general­
isation on one example, an 8th order generalised Penzias example. It is found that 
the MLP once it is converged, in general, has a better classification and generalisa­
tion accuracies compared with CART, or C4.5. On the other hand it is also noted 
that the prediction errors made by each algorithm are different. This indicates that 
there may be a possibility of combining these algorithms in such a way that their 
prediction accuracies could be improved. This is presented as a challenge for future 
research. 
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