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Abstract 

We describe a closed-form technique for mapping the output of a trained 
backpropagation network int.o input activity space. The mapping is an in­
verse mapping in the sense that, when the image of the mapping in input 
activity space is propagat.ed forward through the normal network dynam­
ics, it reproduces the output used to generate that image. When more 
than one such inverse mappings exist, our inverse ma.pping is special in 
that it has no projection onto the nullspace of the activation flow opera­
tor for the entire network. An important by-product of our calculation, 
when more than one invel'se mappings exist, is an orthogonal basis set of 
a significant portion of the activation flow operator nullspace. This basis 
set can be used to obtain an alternate inverse mapping that is optimized 
for a particular rea.l-world application. 

1 Overview 

This paper describes a closed-form technique for mapping a particular output of a 
trained backpropagation net.work int.o input activity space. The mapping produced 
by our technique is an inverse mapping in the sense that, when the image in input 
space of the mapping of an output a.ctivity is propa.gated forward through the 
norma.l network dynamics, it reproduces the output used to generate it.! \Vhen 
mult.iple inverse mappings exist, our inverse mapping is unique in that it has no 

1 It is possible that no such inverse mappings exist. This point is addressed in sect.ion 4. 

868 



Closed-Form Inversion of Backpropagation Networks 869 

projection onto the nullspace of the activation flow operator for the entire network. 
An important by-product of our calculation is an orthogonal basis set of a significant 
portion of this nullspace. Any vector within this nullspace can be added to the 
image from the inverse mapping, producing a new point in input space that is 
still an inverse mapping image in t.he above sense. Using this nullspace, the inverse 
mapping can be opt.imized for a particular applicat.ion by minimizing a cost function 
over the input element.s, relevant to that applicat.ion, to obtain the vector from the 
nullspace to add to the original inverse mapping image. For this reason and because 
of t.he closed-form we obt.ain for calculation of the network inverse mapping, our 
met.hod compares favorably to previously proposed iterative methods of network 
inversion [';Yidrow & Stearns, 1985, Linden & Kinderman, 1989]. We now briefly 
summarize our method of closed-form inversion of a backpropagation network. 

2 The Inverse Mapping Operator 

To outline the calculation of our inverse mapping operator, we start by consid­
ering a trained feed-forward backpropagation network with one hidden layer and 
bipolar sigmoidal activation functions. \Ve calculate this inverse as a sequence of 
the inverses of the sub-operations constituting the dynamics of activation flow. If 
we use the 'I, II, 0' as suhscripts indicating input, hidden and output modules of 
model neurons, respectively. the act.ivation flow from input through hidden module 
to output module is: 

where 

Lo) u 0 W(O,H) 84H) 

u (:;) W(O,H) 8 u 0 'W(H,I) 8!{I) 

u : bipolar sigmoid funct.ion; 

W(dest,sotlrce) : rvlatl'ix operator of connection weights, indexed 

by 'solll'ce' and 'dest'{destination) modules; 

4k) : Vector of activit.ies for module 'k'. 

(1) 

A is defined here as t.he activation flow operat.or for the entire network. The symbol 
8 separat.es operators sequent.ially applied to the argument. 

Since the sub-operators constit.uting A are applied sequentially, the inverse that we 
calculate, A+ , is equal to a composit.ion of inverses of the individual sub-operators, 
with the order of the composition reversed from the order in activation flow. The 
closed-form mapping of a specified output !(O) to input space is then: 

where 

A+ GL'o) 

W?o,H) (:> u- 1 8 }V~I,I) 8 u- 1 8 f(o), 

u- 1 : Inverse of t.he bipolar logistic sigmoid; 

W(dest,soUJ'ce) : Pseudo-inverse of W(de$t,source) . 

(2) 
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Subject to the existence conditions discussed in section 4, !{I) is an inverse mapping 
of!{o) in that it reproduces f(O) when it is propagated forward through the network: 

f(O) A0~I). (3) 

We use singular value decomposit.ion (SVD), a well-known matrix analysis method 
(e.g., [Lancaster, 1985]), to ca.lculate a particular matrix inverse, the pseudo-inverse 
W(~ .) (also known as the Moore-Penrose inverse) of each connection weight matrix 

J " 
block. In the case of W( ll,I), for example, SVD yields the two unitary matrices, 
S(ll'!) and V(H,I), and a rectangular matrix V(H'!) , all zero except for the singular 
values on its diagonal, sllch that 

where 

S(fl,I)V(fl,!) V(H, I) 

V(fl,/) V(fl, 1) S(fl ,/) , 

VCH,/) , V("fl,J) : Transposes of SCH,/) , V(H,l), respectively; 

vtJ,J) : Pseudo-inverse of V(ll,I), which is simply it.s transpose 

wit.h each non-zero singular value replaced by its inverse. 

3 Uniqueness and Optimization Considerations 

(4) 

(5) 

The pseudo-inverse (calculated by SVD or other methods) is one of a class of solu­
tions t.o the inverse of a mat.rix operator that may exist, called generalized inverses. 
For our purposes, each of these generalized inverses, if they exist, are inverses in 
the useful sense tha.t when subst.it.ued for W(j,i) in eq. (2), the resultant !{/) will be 
and inverse mapping image as defined by eq. (3). 

When a matrix operator W does not have a nullspace, the pseudo-inverse is the 
only generalized inverse that exists. If W does have a nullspace, the pseudo-inverse 
is special in that its range cont.ains no projection onto the nullspace of W. It follows 
that if either of t.he mat.rix operat.ors )/\,'(H,J) or W(O,H) in eq. (1) have a nullspace, 
then multiple inverse mapping operators WIll exist. However, the inverse mapping 
operator A+ calculated llsing pseudo-inverses will be the only inverse mapping 
operator that has no projection in the nullspace of A. The derivation of these 
propert.ies follow in a straightforward manner from the discussion of generalized 
inverses in [Lancaster, 1985]. An interesting result of using SVD to obtain the 
pseudo-inverse is that: 

SVD provides a direct method for varying ~J) within the space of inverse 
mapping images ill input space of L ° J. 

This becomes clear when we note that if 1" = P(W(H,I») is the rank of W(H,!) , only 
the first 1" singular values in V(H,J) are non-zero. Thus, only the first r columns of 
S(H,/) and V(/l,J) participate in the activity flow of the network from input module 
to hidden module. 
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The columns {Y.(II'/)(i)h>r of V(lI,I) span the nllllspace of W(H,I). This nullspace is 

also the nullspace of A, or at least a significant portion thereof. 2 If ~J) is an inverse 

mapping image of f(0), then the addition of any vector from the nullspace to ~I) 
would still be an inverse mapping image of ~O), satisfying eq. (3). If an inverse 

mapping image ~I) obtained from eq. (2) is unphysical, or somehow inappropriate 
for a particular application, it could possibly be optimized by combining it with a 
vector from the nullspace of A. 

4 Existence and Stability Considerations 

There are still implementational issues of importance to address: 

1. For a given Lo), can eq. (2) produce some mapping image t(I)? 

2. For a given Lo), will the image ~I) produced by eq. (2) be a true inverse 
mapping image; i.e .. will it. sat.isfy eq. (3)? If not, is it a best approximation in 
some sense? 

3. How stable is an inverse mapping from f(0) tha.t produces the answer 'yes' to 
questions 1 and 2; i.e., if L 0) is perturbed to produce a new output point, will 
this new output point satisfy questions 1 and 2? 

In general, eq. (2) will produce an image for any output point generated by the 
forward dynamics of the network, eq. (1). If Lo) is chosen arbitrarily, however, 

then whether it is in t.he domain of A+ is purely a function of the network weights. 
The domain is restricted because t.he domain of the inverse sigmoid sub-operator is 
restricted to (-1, + 1). 

\Vhether an image produced by eq. (2) will be an inverse mapping image, i.e., 
satisfying eq. (3), is dependent on both the network weights and the network ar­
chitecture. A strong sufficient condit.ion for guara.nteeing this condition is that the 
network have a c07l1'ergent archit.ecture; that is: 

• The dimension of input. space is greater than or equal to the dimension of 
output space . 

• The rank of V(H,I) is greater t.han or equal t.o the rank of'D(O,H)' 

The stability of inverse mappings of a desired output away from such an actual 
output depends wholly on the weights of the network. The range of singular values 
of weight mat.rix block W(O,H) can be used to address this issue. If the range is 
much more than one order of magnitude, then random perturbations about a given 
point in output space will often be outside the domain of A+. This is because the 
columns of S(O,H) and V(O,H) associated wit.h small singular values during forward 

2Since its first sub-operation is linear, and the sigmoid non-linearity we employ maps 
zero to zero, the non-linear operator A can still have a nullspace. Subsequent layers of the 
network might add to this nullspace. however, and the added region may not be a linear 
subspace. 
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activity flow are associated with proportionately large inverse singular values in the 
inverse mapping. Thus, if singular value dO,Hi is small, a random perturbation 
wit.h a projection on column §{O,ll)(i) of S(O,H) will cause a large magnitude swing 
in the inverse sub-operator }V(6,[f) , with t.he result possibly outside the domain of 
u- 1 . 

5 SUllllllary 

• 'Ve have shown t.hat. a closed-form inverse mapping operator of a backprop­
agat.ion network can be obt.ained using a composition of pseudo-inverses and 
inverse sigmoid operators. 

• This inverse mapping operat.or, specified in eq. (2), operating on any point in 
the network's output space, will obtain an inverse image of that point that 
sat.isfies eq. (3), if snch an invf'rse image exist.s. 

• "'hen many inverse images of an out.put. point exist, an extension of the SVD 
analyses used t.o ohtain t.he original inverse image can be used to obtain an 
alternate inverse image optimized t.o satisfy the problem const.raints of a par­
ticular application. 

• The existence of an inverse image of a particular output point. depends on that 
output point. and the network weight.s. The dependence on the network can be 
expressed conveniently in t.erms of the singular values and the singular value 
vectors of the net.work weight mat.rices. 

• Application for thesf' techniqllf'S include explanation of network operation and 
process control. 
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