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ABSTRACT 

Multi-layered neural networks have recently been proposed for non­
linear prediction and system modeling. Although proven successful 
for modeling time invariant nonlinear systems, the inability of neural 
networks to characterize temporal variability has so far been an 
obstacle in applying them to complicated non stationary signals, such 
as speech. In this paper we present a network architecture, called 
"Hidden Control Neural Network" (HCNN), for modeling signals 
generated by nonlinear dynamical systems with restricted time 
variability. The approach taken here is to allow the mapping that is 
implemented by a multi layered neural network to change with time 
as a function of an additional control input signal. This network is 
trained using an algorithm that is based on "back-propagation" and 
segmentation algorithms for estimating the unknown control together 
with the network's parameters. The HCNN approach was applied to 
several tasks including modeling of time-varying nonlinear systems 
and speaker-independent recognition of connected digits, yielding a 
word accuracy of 99.1 %. 

L INTRODUCTION 
Layered networks have attracted considerable interest in recent years due to their 
ability to model adaptively nonlinear multivariate functions. It has been recently proved 
in [1]. that a network with one intennediate layer of sigmoidal units can approximate 
arbitrarily well any continuous mapping. However, being a static model, a layered 
network is not capable of modeling signals with an inherent time variability, such as 
speech. 

In this paper we present a hidden control neural network that can implements non­
linear and time-varying mapping. The hidden control input signal which allows the 
network's mapping to change over time, provides the ability to capture the non­
stationary properties, and learn the underlying temporal structure of the modeled signal. 
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II. THE MODEL 
11.1 MULTI LAYERED NETWORK 

Multi layered neural network is a cn,nnectionist models that iwplements a nonlinear 
mapping from and input x E X c R I to an output y EYe R 0: 

y = F Q)(x), (1) 

where ro Ene R D , the parameter set of the network, consists of the connection 
wegihts and the biases, and x and y are the activation vectors of the input and output 
layers, of dimensionality NJ and No, respectively. 

Recently layered networks have proven useful for non-linear prediction of signals and 
system modeling [2]. In these applications one uses the values of a real signal x(t), at a 
set of discrete times in the past, to predict x (t) at a point in the future. For example, 
for order-one-predictor, the output of the network y is used as a predictor of the next 
signal sample, when the network is given past sample as input, e.g. y =xt =F Q)(Xt-l ), 

where xt denotes the predicted value of the signal at time t, which. in general, differs 
from the true value, x" The parameter set of the network ro is estimated from a 
training set of discrete time samples from a segment of known signal ( x,. t =0 •...• T ), 
by minimizing a prediction error which measures the distortion between the signal and 
the prediction made by the network, 

T 

E(ro)= L II xt-F Q)(xt-d II 2, (2) 
t=1 

and the estimated parameter set ro is given by argmin E ( ro ). 
o 

In [2] such a neural network predictor is used for modeling chaotic series. One of the 
examples considered in [2] is prediction of time series generated by the classic logistic. 
or Feigenbaum. map. 

Xt+l =4'b'xt (1-xt ) (3) 

This iterated map produces an ergodic chaotic time series when b is chosen to equal 1. 
Although this time series passes virtually every test for randomness, it is generated by 
the deterministic Eq.(3), and can be predicted perfectly, once the generating system (3) 
is learned. Using the back-propagation algorithm [3] to minimize the prediction error 
(2) defined on a set of samples of this time series, the network parameters ro were 
adjusted, enabling accurate prediction of the next point Xt+l in this "random" series 
given the present point Xt as an input. The mapping F Q) implemented by the trained 
network approximated very closely the logistic map (3) that generated the modeled 
series. 

11.2 IDDDEN CONTROL NETWORK 

For a given fixed value of the parameters ro, a layered network implements a fixed 
input-output mapping, and therefore can be used for time-invariant system modeling or 
prediction of signals generated by a fixed, time-invariant system. Hidden control 
network that is based on such layered network. has an additional mechanism that 
allows the mapping (1) to change with time, keeping the parameters ro fixed. We 
consider the case where the units in the input layer are divided into two distinct 
groups. The first input unit group represents the observable input to the network, 
x E X c R p. and the second represents a control signal C E C c R q , P + q =NJ, that 
controls the mapping between the observable input x, and the network output y. 

The output of the network y is given. according to (I), by F Q)(x • c) , where (x, c) 
denotes the concatenation of the two inputs. We focus on the mapping between the 
observable input x and the output. This mapping is modulated by the control input c : 
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for a fixed value of x and for different values of c. the network produces different 
outputs. For a fixed control input. the network implements a fixed observable input­
output mapping. but when the control input changes. the network's mapping changes 
as well. modifying the characteristics of the observed signal: 

~ 
y=Fm(x.c) = Fm,c(x). (4) 

If the control signal is known for all time t. there is no point in distinguishing between 
the observable input, X. and the control input c. The more interesting situation is when 
the control signal is unknown or hidden. i.e.. the hidden control case. which we will 
treat in this paper, 

This model can be used for prediction and modeling of nonstationary signals generated 
by time-varying sources, In the case of first order prediction the present value of the 
signal x, is predicted based on x,-1. with respect to the control input c,. If we restrict 
the control signal to take its values from a finite set. c E {C 1. ". • CN } == C. then 
the network is a finite state networ~ where in each state it implements a fixed input­
output mapping F m,C.' Such a network with two or more intennidiate layers can 
approximate arbitrarily closely any set (F 1. .,. .F N} of continuous functions of the 
observable input x [4]. 

In the applications we considered for this model. two types of time-structures were 
used. namely 

Fully connected model: In this type of HCNN. every state. corresponding to a specific 
value of the control input. can be reached from any other state in a single time step. It 
means that there are no temporal restrictions on the control signal. and in each time 
step. it can take any of its N possible values { C 1 • •••• CN }. For example. a 2 state fully 
connected model is shown in Fig. la. In a generative mode of operation. when the 
observable input of the network is wired to be the the previous network's output • the 
observable signal x(t) is generated in each one of the states by a different dynamics: 
x'+1=Fc,(x,). C, E {O. I}. and therefore this network emulates two different dynamical 
systems. with the control signal acting as a switch between them. 

Left-to-right model: For spoken word modeling. we will consider a finite-state. left­
to-right HCNN (see Fig.lb). where the control signal is further restricted to take value 
Ci only if in the previous time step it had a value of Ci or Ci - 1• Each state of this 
network represents an unspecified acoustic unit. and due to the "left-to-right" structure. 
the whole word is modeled as concatenation of such acoustic units. The time spent in 
each of the states is not fixed. since it varies according to the value of the control 
signal. and therefore the model can take into account the duration variability between 
different utterances of the same word. 

Figure 1: a-Fully connected 2 state HCNN ; 
b-Left to right 8 state HCNN for word modeling. 

F. 
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ITI. USING HCNN 
Given the predictive fonn of HCNN described in the previous section, there are three 
basic problems of interest that must be solved for the model to be useful in real-world 
applications. This problems are the following: 

Segmentation problem : Here we attempt to uncover the hidden part of the model, 
Le., given a network ro and a sequence of observations ( X" t =<> •...• T ), to find the 
correct control sequence, which best explains the observations. This problem is solved 
using an optimality criterion. namely the prediction error. similar to Eq.(2). 

T 

E(ro.cD==l: II x,-Fm,c,(x,-d 112. (5) 
1=1 

where cf denotes the control sequence Cl • •••• CT. Ci e C. For a given network. rot 
the prediction error (5) is a function of the hidden control input sequence. and thus 
segmentation is associated with the minimization: 

c;==argminE(ro.cf). (6) 
cT 

In the case of a finite-state. fully connected model. this minimization can be perfonned 
exhaustively, by minimizing for each observation separately. and for a fully connected 
HCNN with a real-valued control signal (i.e. not the finite state case), local 
minimization of (5) can be perfonned using the back-propagation algorithm. For a 
"left-to-right" model , global minimum of (5) is attained efficiently using the Viterbi 
algorithm [5]. 

Evaluation problem, namely how well a given network ro matches a given sequence 
of observations { x,, t =<> •... , T }. The evaluation is a key point for many applications. 
For example. if we consider the case in which we are trying to choose among several 
competing networks, that represent different hypothesis in the hypotheses space, the 
solution to Problem 2 allows us to choose the network that best matches the 
observation. This problem is also solved using the prediction error defined in (5). The 
match, or actually, the distortion, is measured by the prediction error of the network on 
a sequence of observations, for the best possible sequence of hidden control inputs, i.e .• 

E(ro)==minE(ro.cf). (7) 
cT 

Therefore. to evaluate a network. first the segmentation problem must be solved. 

Training problem, i.e.. how to adjust the model parameters ro to best match the 
observation sequence. or training set. (x" 1=0 • .... T ). 

The training in layered networks is accomplished by minimizing the prediction error of 
Eq.(2) using versions of the back-propagation algorithm. In the HCNN case, the 
prediction error (5) is a function of the hidden parameters and the hidden control input 
sequence. and thus training is associated with the joint minimization: 

ro==argmin{minE(ro.c[)} . (8) 
Q cT 

This minimization is perfonned by an iterative training algorithm. 

The k-th iteration of the algorithm consists of two stages: 

1. Reestimation: For the present value of the control input sequence. the prediction 
error is minimized with respect to the network parameters. 

(ro)k==argminE(ro. (C[h-l) (9) 
a 
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This minimization is implemented by the back-propagation algorithm. 

2. Segmentation: Using the values of parameters. obtained from the previous stage. 
the control sequence is estimated (as in (6) ). 

(c[}k=argminE«ro)A: .c[) (10) 
cT 

IV. HCNN AS A STATISTICAL MODEL 
For further understanding of the properties of the proposed model and the training 
procedure. it is useful to describe the HCNN by an equivalent statistical vector source 
of the following form: 

x, = Fm,c,(X,-l )+n,. n,-N(O.J). (11) 

where n, is a white Gaussian noise. Assuming for simplicity that all the values of the 
control allowed by the model are equiprobable (this is a special case of Markov 
process. and can be easily extended for the general case) • we can write the joint 
likelihood of the data and the control 

pT T 

p(xLc[ I ro)=(27t)-T exp[-~ L II x,-F CIl,c,(Xr-1) 11 2]. (12) 
,=1 

where xf denotes the sequence of observation {x 1. X2. . •. .XT}' 

Eq.(12) provides a probabilistic interpretation of the procedures described in the 
previous section: 

The proposed segmentation procedure is equivalent to choosing the most probable 
control sequence. given the network and the observations. 

The evaluation of the network is related to the probability of the observations given the 
model. for the best sequence of control inputs. 

min E (ro. cD <=> max P (x[. cf I ro) • (13) 
cT cT 

The proposed training procedure (Eq. 8) is equivalent to maximization of the joint 
likelihood (12): 

&=argmin{minE(ro.s[)) =argmax{maxP (xL c[ I ro)). (14) 
11 cT a cT 

Thus (8) is equivalent to an approximate maximum likelihood training. where instead 
of maximizing the marginal likelihood P (x[ I co)= I:P (xL c[ I ro). only the 

c T 

maximal term in the sum. the joint likelihood (14) is considered. The approximate 
maximum likelihood training avoids the computational complexity of the exact 
maximum likelihood approach. and recently [6] was shown to yield results similar to 
those obtained by the exact maximum likelihood training. 

IV.1 HCNN and the Hidden Markov Model (HMM) 

During the past decade hidden Markov modeling has been used extensively to 
represent the probability distribution of spoken words [7]. A hidden Markov model 
assumes that the modeled speech signal can be characterized as being produced at each 
time instant by one of the states of a finite state source. and that each observation 
vector is an independent sample according to the probability distribution of the current 
state. The transitions between the states of the model are governed by a Markov 
process 

HCNN can be viewed as an extension of this model to the case of Markov output 
processes. The observable signal in each state is modeled as though it was produced by 
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a dynamical system driven by noise. Here we are modeling the dynamics that 
generated the signal. F 0). and the dependence of the present observation vector on the 
previous one. The assumption that the driving noise (12) is nonnal is not necessary: 
instead. we can assume a parametric fonn of the noise density. and estimate its 
parameters. 

V. EXPERIMENTAL EVALUATION 
For experimental evaluation of the proposed model. we tested on two different tasks: 

V.l Time-varying system modeling and segmentation 
Here an HCNN was used for a single-step prediction of a signal generated by a time­
varying system. described by 

{
FL(Xt) if switch =0 

Xt+l = 1-FL (x,) if switch = 1 • (15) 

where FL is the logistic map from Eq. (3). and switch is a random variable. assuming 
binary values. Both of the systems. FL. and 1-FL• are chaotic and produce signals in 
the range [0.1]. A fully connected. 2-state HCNN (each state corresponding to one 
switch position). as in Fig. 1a. was trained on a segment of 400 samples of such a 
signal. according to the training algorithm described in section V. The perfonnance of 
the resulting network was tested on an independent set of 1000 samples of this signal. 
The estimated control sequence differed from the real switch position in only 8 out of 
1000 test samples. The evaluation score. i.e .• the average prediction error for this 
estimated control sequence was 7.5xlO-5 per sample. Fig. 2 compares the mapping 
implemented by the network in one state. corresponding to control value set to O. and 
the logistic map for switch =0. Similar results are obtained for c=l and switch=1. 
These results indicate that the HCNN was indeed able to capture the two underlying 
dynamics that generated the modeled signal. and to learn the switching pattern 
simultaneously. 

Fig.2 Comparison of the logistic map and the mapping implemented by HCNN with c=O. 

V.2 Continuous recognition of digit sequences 
Here we tested the proposed HCNN modeling technique on recognition of connected 
spoken versions of the digits. consisting of "zero" to "nine". and including the word 
"oh". recorded from male speakers through a telephone handset and sampled at 6.67 
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kHz. LPC analysis of order 8 was performed on frames of 45 msec duration, with 
overlap of 15 msec, and 12 cepstral and 12 delta cepstral [8] coefficients were derived 
for the t-th frame to form the observable signal X" Each digit was modeled by an 8 
state,left-to-right RCNN, as in Fig.1b. The network was trained to predict the cepstral 
and delta cepstral coefficients for the next frame. Each network consisted of 32 input 
units (24 to encode Xt and 8 for a distributed representation of the 8 control values), 24 
output units and 30 hidden units, all fully connected. Each network was trained using 
a training set of 900 utterances from 44 male speakers extracted from continuous 
strings of digits using an HMM based recognizer [9]. 1666 strings (5600 words), 
uttered by an independent set of 22 male speakers were used for estimating the 
recognition accuracy. The mean and the covariance of the driving noise (12) were 
modeled. The word accuracy obtained was 99.1 %. 

Fig. 3a illustrates the process of recognition (the forward pass of Viterbi algorithm) of 
the word "one" by the speaker-independent system. The horizontal axis is time (in 
frames). 11 models from "zero" to "nine" , and "oh" appear on the vertical axis. The 
numbers that appear in the graph (from 1 to 8) describe the number of a state. For 
example, number 2 inside the second row of the graph denotes state number 2 of the 
model of the word "one". In each frame, the prediction error was calculated for each 
one of the states in each model, resulting in 88 different prediction errors. The graph 
in each frame shows the states of the models that are in the vicinity of the minimal 
error among those 88. This is a partial description of a forward pass of the Viterbi 
algorithm in recognition, before the left-to-right constraints of the models are taken 
into account Figure 3a shows that the main candidate considered in recognition of the 
word "one" is the actual model of "one", but in the end of the word two spurious 
candidates arise. The spurious candidates are certain states of the models of "seven" 
and "nine". Those states are detectors of the nasal 'n' that appears in all these words. 

Figure 3b shows the recognition of a four digit string "three - five - oh - four". The 
spurious candidates indicate detectors of certain sounds, common to different words, 
like in "four" and in "oh", in "five" and in "nine", in "three", "six" and "eight" . 

"-" --

... 
...­--. 

.. _- ............ " ....... . 
Fig. 3 Illustration of the recognition process. 
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VI. SUMMARY AND DISCUSSION 
This paper introduces a generalization of the layered neural network that can 
implement a time-varying non-linear mapping between its observable input and output. 
The variation of the network's mapping is due to an additional, hidden control input, 
while the network parameters remain unchanged. We proposed an algorithm for 
finding the network parameters and the hidden control sequence from a training set of 
examples of observable input and output. This algorithm implements an approximate 
maximum likelihood estimation of parameters of an equivalent statistical model, when 
only the dominant control sequence is taken into account. The conceptual difference 
between the proposed model and the HMM is that in the HMM approach, the 
observable data in each of the states is modeled as though it was produced by a 
memoryless source, and a parametric description of this source is obtained during 
training, while in the proposed model the observations in each state are produced by a 
non-linear dynamical system driven by noise, and both the parametric form of the 
dynamics and the noise are estimated. The perfonnance of the model was illustrated 
for the tasks of nonlinear time-varying system modeling and continuously spoken digit 
recognition. The reported results show the potential of this model for providing high 
performance speech recognition capability. 
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