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Acoustic speech recognition degrades in the presence of noise. Com­
pensatory information is available from the visual speech signals 
around the speaker's mouth. Previous attempts at using these 
visual speech signals to improve automatic speech recognition sys­
tems have combined the acoustic and visual speech information at a 
symbolic level using heuristic rules. In this paper, we demonstrate 
an alternative approach to fusing the visual and acoustic speech 
information by training feedforward neural networks to map the 
visual signal onto the corresponding short-term spectral amplitude 
envelope (STSAE) of the acoustic signal. This information can 
be directly combined with the degraded acoustic STSAE. Signif­
icant improvements are demonstrated in vowel recognition from 
noise-degraded acoustic signals. These results are compared to the 
performance of humans, as well as other pattern matching and es­
timation algorithms. 

1 INTRODUCTION 

Current automatic speech recognition systems rely almost exclusively on the acous­
tic speech signal, and as a consequence, these systems often perform poorly in noisy 
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environments. To compensate for noise-degradation of the acoustic signal, one can 
either attempt to remove the noise from the acoustic :;ignal or supplement the acous­
tic signal with other sources of speech information. One such source is the visible 
movements of the mouth. For humans, visual speech signals can improve speech 
perception when the acoustic signal is degraded by noise (Sumby and Pollack, 1954) 
and can serve as a source of speech information when the acoustic signal is com­
pletely absent through lipreading. How can these visual speech signals be used to 
improve the automatic recognition of speech? 

One speech recognition system that has extensively used the visual speech signals 
was developed by Eric Petajan (1987). For a limited vocabulary, Petajan demon­
strated that the visual speech signals can be used to significantly improve automatic 
speech recognition compared to the acoustic recognition alone. The system relied 
upon a codebook of images that were used to translate incoming images into corre­
sponding symbols. These symbol strings were then compared to stored sequences 
representing different words in the vocabulary. This categorical treatment of speech 
signals is required because of the computational limitations of currently available 
digital serial hardware. 

This paper proposes an alternative method for processing visual speech signals 
based on analog computation in a distributed network architecture. By using many 
interconnected processors working in parallel large amounts of data can be handled 
concurrently. In addition to speeding up the computation, this approach does not 
require segmentation in the early stages of processing; rather, analog signals from 
the visual and auditory pathways flow through networks in real time and can be 
combined directly. 

Results are presented from a series of experiments that use neural networks to pro­
cess the visual speech signals of two talkers. In these preliminary experiments, 
the results are limited to static images of vowels. We demonstrate that these net­
works are able to extract speech information from the visual images, and that this 
information can be used to improve automatic vowel recognition. 

2 VISUAL AND ACOUSTIC SPEECH SIGNALS 

The acoustic speech signal can be modeled as the response of the vocal tract filter to 
a sound source (Fant, 1960). The resonances of the vocal tract are called formants. 
They often appear as peaks in the short-term power spectrum, and are sufficient to 
identify the individual vowels (Peterson and Barney, 1953). The overall shape of 
the short-time spectra is important for general speech perception (Cole, 1980). 

The configuration of the articulators define the shape of the vocal tract and the 
corresponding resonance characteristics of the filter. While some of the articulators 
are visible on the face of the speaker (e.g., the lips, teeth and sometimes the tip 
of the tongue), others are not. The contribution of the visible articulators to the 
acoustic signal results in speech sounds that are much more susceptible to acoustic 
noise distortion than are the contributions from the hidden articulators (Petajan, 
1987), and therefore, the visual speech signal tends to complement the acoustic 
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signal. For example, the visibly distinct speech sounds Ibl and Ikl are among 
the first pairs to be confused when presented acoustically in the presence of noise. 
Because of this complementary structure, the perception of speech in noise is greatly 
improved when both speech signals are present. How and at what level are these 
two speech signals being combined? 

In previous attempts at using the visual speech signals, the information from the 
visual signal was incorporated into the recognition system after the signals were 
categorized (Petajan, 1987). In the approach taken here, visual signals will be used 
to resolve ambiguities in the acoustic signal before either is categorized. By com­
bining these two sources of information at an early stage of processing, it is possible 
to reduce the number of erroneous decisions made and increase the amount of in­
formation passed to later stages of processing (Summerfield, 1987). The additional 
information provided by the visual signal can serve to constrain the possible inter­
pretations of an ambiguous acoustic signal, or it can serve as an alternative source 
of speech information when the acoustical signal is heavily noise-corrupted. In ei­
ther case, a massive amount of computation must be performed on the raw data. 
New massively-parallel architectures based on neural networks and new training 
procedures have made this approach feasible. 

3 INTERPRETING THE VISUAL SIGNALS 

In our approach, the visual signal was mapped directly into an acoustic representa­
tion closely related to the vocal tract's transfer function (Summerfield, 1987). This 
representation allowed the visual signal to be fused with the acoustic signal prior 
to any symbolic encoding. 

The visual signals provide only a partial description of the vocal tract transfer 
function and that description is usually ambiguous. For a given visual signal there 
are many possible configurations of the full vocal tract, and consequently many 
possible corresponding acoustic signals. The goal was to define a good estimate of 
that acoustic signal from the visual signal and then use that estimate in conjunction 
with any residual acoustic information. 

The speech signals used in these experiments were obtained from a male speaker 
who was video taped while seated facing the camera, under well-lit conditions. The 
visual and acoustic signals were then transferred and stored on laser disc (Bernstein 
and Eberhardt, 1986), which allowed the access of individual video frames and the 
corresponding sound track. The NTSC video standard is based upon 30 frames per 
second and words are preserved as a series of frames on the laser disc. A data set 
was constructed of 12 examples of 9 different vowels (Yuhas et al., 1989). 

A reduced area-of-interest in the image was automatically defined and centered 
around the mouth. The resulting sub-image was sampled to produce a topograph­
ically accurate image of 20 x 25 pixels that would serve to represent the visual 
speech signal. While not the most efficient encoding one could use, it is faithful 
to the parallel approach to computation advocated here and represents what one 
might observe through an array of sensors. 



Combining Visual and Acoustic Speech Signals 235 

Along with each video frame on the laser disc there is 33 ms of acoustic speech. The 
representation chosen for the acoustic output structure was the short-time spectral 
amplitude envelope (STSAE) of the acoustic signal, because it is essential to speech 
recognition and also closely related to the vocal tract's transfer function. It can be 
calculated from the short-term power spectrum of the acoustic signal. The speech 
signal was sampled and cepstral analysis was used to produced a smooth envelope 
of the original power spectrum that could be sampled at 32 frequencies. 

Figure 1: Typical lip images presented to the network. 

Three-layered feedforward networks with non-linear units were used to perform the 
mapping. A lip image was presented across 500 input units, and an estimated 
STSAE was produced across 32 output units. Networks with five hidden units 
were found to provide the necessary bandwidth while minimizing the effects of 
over-learning. The standard backpropagation technique was used to compute the 
error gradients for training the network. However, instead of using a fixed-step 
steepest-descent algorithm for updating the weights, the error gradient was used 
in a conjugate-gradient algorithm. The weights were changed only after all of the 
training patterns were presented. 

4 INTEGRATING THE VISUAL AND ACOUSTIC SPEECH 
SIGNALS 

To evaluate the spectral estimates, a feedforward network was trained to recognize 
vowels from their STSAE's. With no noise present, the trained network could 
correctly categorized 100% of the 54 STSAE's in its training set: thus serving as a 
perfect recognizer for this data. The vowel recognizer was then presented with speech 
information through two channels, as shown in Fig. 2. The path on the bottom 
represents the information obtained from the acoustic signal, while the path on the 
top provides information obtained from the corresponding visual speech signal. 

To assess the performance of the recognizer in noise, clean spectral envelopes were 
systematically degraded by noise and then presented to the recognizer. In this 
particular condition, no visual input was given to the network. The noise was 
introduced by adding a normalized random vector to the STSAE. Noise corrupted 
vectors were produced at 3 dB intervals from -12 dB to 24 dB. At each step 6 
different vectors were produced, and the performance reported was the average. 
Fig. 3 shows the recognition rates as a function of the speech-to- noise ratio. At a 
speech-to-noise ratio of -12 dB, the recognizer was operating at chance or 11.1%. 

Next, a network trained to estimate the spectral envelopes from images was used 
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to provide an independent STSAE input into the recognizer (along the top of Fig. 
2). This network was not trained on any of the data that was used in training the 
vowel recognizer. The task remained to combine these two STSAE's. 

STSAE estimated 
from the visual signal 

Visual Neural ~ 
Speech > l...-N_e_t",_or_k--JF==~: 
Signal _ 

Acoustic 
Speech 
Signal 

~ ~ ==» Recognizer 
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Figure 2: A vowel recognizer that integrates the acoustic and visual speech signals. 

We considered three different ways of combining the estimates obtained from visual 
signals with the noised degraded acoustic envelopes. The first approach was to 
simply average the two envelopes, which proved to be less than optimal. The 
recognizer was able to identify 55.6% ofthe STSAE estimated from the visual signal, 
but when the visual estimate was combined with the noise degraded acoustic signal 
the recognizer was only capable of 35% at a SIN of -12 dB. Similarly, at very high 
signal-to-noise ratios, the combined input produced poorer results than the acoustic 
signal alone provided. To correct for this, the two inputs needed to be weighted 
according to the relative amount of information available from each source. A 
weighting factor was introduced which was a function of speech-to-noise: 

a SViltJll1 + (1 - a) SAcotJ,tic (1) 

The optimal value for the parameter a was found empirically to vary linearly with 
the speech-to-noise ratio in dB. The value for a ranged from approximately 0.8 
at SIN of -12dB to 0.0 at 24 dB. The results obtained from using the a weighted 
average are shown in Fig. 3. 

The third method used to fuse the two STSAE's was with a second-order neural 
network (Rumelhart et al. 1986). Sigma-pi networks were trained to take in noise­
degraded acoustic envelopes and estimated envelopes from the corresponding visual 
speech signal. The networks were able to recreate the noise-free acoustic envelope 
with greater accuracy than any of the other methods, as measured by mean squared 
error. This increased accuracy did not however translate into improved recognition 
rates. 



Combining Visual and Acoustic Speech Signals 237 

100 

80 

~ 
'-" .... 60 
0 
<l) 
L.. 
L.. 40 
0 
u 

20 

0 
-15 -9 -3 3 9 15 21 27 

SIN (dB) 
Figure 3: The visual contribution to speech recognition in noise. The lower curve 
shows the performance of the recognizer under varying signal-to-noise conditions 
using only the acoustic channel. The top curve shows the final improvement when 
the two channels were combined using the a weighted average. 

5 COMPARING PERFORMANCE 

The performance of the network was compared to more traditional signal-processing 
techniques. 

5.1 K-NEAREST NEIGHBORS 

In this first comparison, an estimate of the STSAE was obtained using a k-nearest 
neighbors approach. The images in the training set were stored along with their 
corresponding STSAE calculated from the acoustic signal. These images served 
as the data base of stored templates. Individual images from the test set were 
correlated against all of the stored images and the closest k images were selected. 
The acoustic STSAE corresponding to the k selected images were then averaged 
to produce an estimate of the STSAE corresponding to the test image. Using this 
procedure for various values of k, average MSE was calculated for the test set. This 
procedure was then repeated with the test and training set reversed. 

For values ofk between 2 and 6 the k-nearest neighbor estimator was able to produce 
STSAE estimates with approximately the same accuracy as the neural networks. 
Those networks evaluated after 500 training epochs produced estimates with 9% 
more error than the KNN approach, while those weights corresponding to the net­
works' best performance, as defined above, produced estimates with 5% less error. 

5.1.1 PRINCIPAL COMPONENT ANALYSIS 

A second method of comparison was to obtain an STSAE estimate using a combi­
nation of optimal linear techniques. The first step was to encode the images using 
a Hotelling transform, which produces an optimal encoding of an image with re­
spect to a least-mean-squared error. The encoded image Yi was computed from the 



238 Sejnowski, Yuhas, Goldstein and Jenkins 

normalized image %i using 
(2) 

where m1: was the mean image. A was a transformation matrix whose rows were 
the five largest eigenvectors of the covariance matrix of the images. The vector Yi 
represents the image as do the hidden units of the neural network. 

The second step was to find a mapping from the encoded image vector Yi to the 
corresponding short-term spectral envelope Si using a linear least-squares fit. For 
the Yi'S calculated above, a B was found that provided the best estimate of the 
desired Si: 

(3) 

If we think of the matrix A as corresponding to the weights from the input layer to 
the hidden units, then B maps the hidden units to the output units. 

The networks trained to produce STSAE estimates were far superior to those ob­
tained using the coefficients of A and B. This was true not only for the training 
data from which A and B were calculated, but also for the test data set. When 
compared to networks trained for 500 epochs, the networks produced estimates of 
the STSAE's that were 46% better on the training set and 12% better on the test 
set. 

6 CONCLUSION 

Humans are capable of combining information received through distinct sensory 
channels with great speed and ease. The combined use of the visual and acous­
tic speech signals is just one example of integrating information across modalities. 
Sumby and Pollack (1954) have shown that the relative improvement provided by 
the visual signal varies with the signal-to-noise ratio of the acoustic signal. By 
combining the speech information available from the two speech signals before cat­
egorizing, we obtained performance that was comparable to that demonstrated by 
humans. 

We have shown that visual and acoustic speech information can be effectively fused 
without requiring categorical preprocessing. The low-level integration of the two 
speech signals was particularly useful when the signal-to-noise ratio ranged from 3 
dB to 15 dB, where the combined signals were recognized with a greater accuracy 
than either of the two component signals alone. In contrast, an independent cate­
gorical decisions on each channel would have required additional information in the 
form of ad hoc rules to produce the same level of performance. 

Lip reading research has traditionally focused on the identification and evaluation 
of visual features (Montgomery and Jackson, 1983). Reducing the original speech 
signals to a finite set of predefined parameters or to discrete symbols can waste 
a tremendous amount of information. For an automatic recognition system this 
information may prove to be useful at a later stage of processing. In our approach, 
speech information in the visual signal is accessed without requiring discrete feature 
analysis or making categorical decisions. 
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This line of research has consequences for other problems, such as target identifica­
tion based on multiple sensors. For example, the same problems arise in designing 
systems that combine radar and infrared data. Mapping into a common representa­
tion using neural network models could also be applied to these problem domains. 
The key insight is to combine this information at a stage prior to categorization. 
Neural network learning procedures allow systems to be constructed for performing 
the mappings as long as sufficient data are available to train the network. 
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