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ABSTRACT 

We have constructed a two axis camera positioning system which 
is roughly analogous to a single human eye. This Artificial-Eye (A­
eye) combines the signals generated by two rate gyroscopes with 
motion information extracted from visual analysis to stabilize its 
camera. This stabilization process is similar to the vestibulo-ocular 
response (VOR); like the VOR, A-eye learns a system model that 
can be incrementally modified to adapt to changes in its structure, 
performance and environment. A-eye is an example of a robust sen­
sory system that performs computations that can be of significant 
use to the designers of mobile robots. 

1 Introduction 

We have constructed an "artificial eye" (A-eye), an autonomous robot that incorpo­
rates a two axis camera positioning system (figure 1). Like a the human oculomotor 
system, A-eye can estimate the rotation rate of its body with a gyroscope and esti­
mate the rotation rate of its "eye" by measuring image slip acr~ its "retina". Using 
the gyroscope to sense rotation, A-eye attempts to stabilize its camera by driving 
the camera motors to counteract body motion. The conversion of gyro output to 
motor command is dependent on the characteristics of the gyroscope, the structure 
of camera lensing system and the response of the motors. A correctly function­
ing stabilization system must model the characteristics of each of these external 
variables. 
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Figure 1: The construction of A-eye can be viewed in rough analogy to the human 
oculomotor system. In place of an eye, A-eye has a camera on a two axis position­
ing platform. In place of the circular canals of the inner ear, A-eye has two rate 
gyroscopes that measure rotation in perpendicular axes. 

Since camera motion implies stabilization error, A-eye uses a visual estimate of 
camera motion to incrementally update its system model. \Vhen the camera is cor­
rectly stabilized there is no statistically significant slip. \Vhenever a particular gyro 
measurement is associated with a result camera motion, A-eye makes an incremen­
tal change to its response to that particular measurement to reduce that error in 
the future. 

A-eye was built for two reasons: to facilitate the operation of complex visually 
guided mobile robots and to explore the applicability of simple learning techniques 
to the construction of a robust robot. 

2 Autonomous Robots 

An autonomous robot must function correctly for long periods of time without hu­
man intervention. It is certainly difficult to create an autonomous robot or process 
that will function accurately, both initially and perpetually. To achieve such a goal, 
autonomous processes must be able to adapt both to unforeseen aspects of the en­
vironment and inaccuracies in construction. One approach to attaining successful 
autonomous performance would entail the full characterization of the robot's struc­
ture, its performance requirements, and its relationship with the environment. Since 
clearly both the robot and its environment are susceptible to change any charac­
terization could not be static. In contrast, our approach only partially categorizes 
the robot's structure, environment, and task. Without more detailed information 
initial performance is inaccurate. However, by using a measure of error in perfor­
mance initially partial categorization can incrementally improved. In addition, a 
change to system performance can be compensated continually. In this way the 
extensive analysis and engineering that would be required to characterize, foresee 
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and circumvent variability can be greatly reduced. 

3 The VOR 

The oculomotor processes found in vertebrates are well studied. examples of adap­
tive, visually guided processing [Gou85]. The three oculomotor processes found 
almost universally in vertebrates (the vestibulo-ocular response, the optokinetic 
system, and the saccadic system), accurately perform ocular positioning tasks with 
little or no conscious direction. The response times of these systems demonstrate 
that little high level, "conscious", processing could take place. In a limited sense 
these processes are autonomous, and it should come as no surprise that they are 
quite plastic. Such plasticity is necessary to counteract the foreseeable changes in 
the eye due to growth and aging and the unforeseeable changes due to illness and 
injury. 

The VOR works to counteract the motion of a creature in its environment. A cor­
rectly functioning VOR ensures that a creature "sees" as little unintended motion 
as possible. Miles [FAM81] and others have demonstrated that the VOR is an 
adaptive motor response, capable of significant recalibration in a matter of days. 
Adaptation can be demonstrated by the use of inverting or magnifying spectacles. 
While wearing these glasses the correct orbital motion of the eye, given a particu­
lar head motion, is significantly different from the normal response. Initially, the 
response to head motion is an incorrect eye motion. With time eye motion begins 
to approach the correct counteracting motion. This kind of adaptation allows an 
animal to continue functioning in spite of injury or illness. 

4 The Device 

A-eye is a small autonomous robot that incorporates a CCD camera, a three wheel 
base, a two axis pitch/yaw camera positioning platform, and two rate gyroscopes. 
On board processing includes a Motorola microcontroller and 68020 based video 
processing board. Including batteries, A-eye is a foot high cylinder that is 12 inches 
wide. In its present configuration A-eye can run autonomously for up to three hours 
(figure 2). 

A-eye's goal is to learn how to keep its camera stable as its base trundles down 
corridors. There are two sources of information regarding the motion of A-eye's 
base: gyro rotation measurements and optical flow. Rate gyroscopes measure base 
rotation rate directly. Visual analysis can be used to estimate motion by a number 
of methods of varying complexity (see [Hil83] for a good overview). By attempting 
to measure only camera rotation from slip complexity can be avoided. The simple 
method we have chosen measures the slip of images across the retina. 

4.1 Visual Rotation Estimation 

Our approach to camera rotation estimation uses a pre-processing subunit com­
monly known as a "Reichard detector" which for clarity we will call a shift and 
correlate .nit [PR73]. A shift and cOJTelate unit has as its inputs a set of samples 
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Figure 2: A photo of the current state of A-eye. 

from a blurred area of the retina. It shifts these inputs spatially and correlates them 
with a previous, unshifted set of inputs. \"hen two succeeding images are identi­
cal except for a spatial shift, the units which perform that shift respond strongly. 
Clearly the activity of a shift and correlate anit contains information about retinal 
motion. Due to the size and direction of shift, some detectors will be sensitive 
to small motions, others large motions, and each will be sensitive to a particular 
direction of motion. 

The input from the shift and correlate units is used to build value-unit encoded 
retinal velocity map, in which each unit is sensitive to a different direction and 
range of velocities. The map has 9 units in a 3 by 3 grid (fig 3). To create such 
a map, each of the shift and correlate uniu is connected to every map unit. By 
moving the camera, displaced images that are examples of motion, are generated. 
The motor command that generated this motion example corresponds to a unit 
in the visual velocity map. Connection weights are updated by a standard least 
squares learning rule. In operation, the most ac.tive unit represents the estimate of 
visual motion. 

4.2 Gyroscope Rotation Estimation 

Contrary to first intuition, vertebrates do not rely on visual information to stabi­
lize their eyes. Instead head rotation information measured by the inner ear, or 
the vestibula, is used keep the eyes stable. Animals do not measure ocular motion 
directly from visual information for two reasons: a) the response rates of photore­
ceptors prevent useful visual processing during rapid eye movements [Gou85] b) the 
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Figure 3: The 9 unit velocity map has 1 unit for each of the 8 "chess moves" . 
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Figure 4: Open-loop control of ocular position based on gyroscope output. 

required visual analysis takes approximately lOOms l . These difficulties combine to 
prevent rapid response to unexpected head and body motions. A-eye is beset with 
similar limitations and we have chosen a similar solution. 

The output of the gyroscope is some function of head rotation rate. Stabilization 
is achieved by driving the ocular motors directly in opposition to the measured 
velocity (fig 4). This counteract rotation of the base in one direction by moving 
the camera in the opposite direction. Such an open-loop system is very simple and 
can perform well; they are unfortunately very reliant on proper calibration and 
recalibration to maintain performance [Oga70). 

A-eye maintains calibration information in the form of a function from gyroscope 
output to motor velocity command. This function is an 8 unit gaussian radial basis 
approximation network (TP89). Basis function approximation has excellent com­
putational properties while representing wide variety of smooth functions. Weights 
are modified with a simple least squares update rule, based errors in camera motion 
detected visually. 

5 Training A-eye 

A-eye learns to perform the VOR in a two phase process. First, the measurement of 
visual motion is calibrated to the generation of camera motion commands. Second, 

lOcular following, the tendency to follow the motion of a !Cene in the &beence of head motion, 
has a typical latency of lOOms [FM87). 



Neurally Inspired Plasticity in Oculomotor Processes 295 

the stabilizing motor responses to gyroscope measurements are approximated. This 
approximation is modified based on a visual estimate of camera motion . 

By observing motor commands and comparing them to the resulting visual motion, 
a map from visual motion to appropriate motor command can be learned. To train 
the visual motion map, A-eye performs a set of characteristic motions and observes 
the results. Each motor command is categorized as one of the 9 distinct motions 
encoded by the visual motion map. With each motion, the connections from shift 
and correlate units to the visual motion map are updated so that issuing a motor 
command results in activity in the correct visual motion unit. Because no reference 
is made to external variables, this measure of visual motion is completely relative 
to the function of the camera motors. The visual motion map plays the role of ertor 
signal for later learning. 

By observing both the gyroscope output and the visual response from head motion, 
A-eye learns the appropriate compensating eye motion for all head motions. Eye 
compensation motions are the result of motor commands generated by the approx­
imation network applied to the gyroscope output. Incorrect responses will cause 
visual mot.ion. This motion, as measured by the visual motion detector, is the error 
signal that drives the modification of the approximation network. This is the heart 
of the adaptation in the VOR. 

5.1 Results 

While training the motion detector and approximation network there are 5 training 
events per second (the visual analysis takes about 200 msec). Training the visual 
motion detector can take up to 10 minutes (in a few environments the weights refuse 
to settle on the correct values). While it is possible to hand wire a detector that 
is 95% accurate, most learned detectors worked well, attaining 85% accuracy. In 
both cases, the detectors have the desirable capability of rejecting object motion 
whenever there is actual camera motion (this is due to the global nature of the 
analysis). 

The approximation network converges to a function that performs well in minutes 
(figure 5) . Analysis of the images generated by the camera leads us to bound the 
cumulative error in rotation over a 1 minute trial at 5 degrees (we believe this 
approaches the accuracy limitations inherent in the gyroscope). 

An approach to reducing this gyroscope error involves yet another oculomotor pr~ 
cess: optokinetic nystagmus (OKN). This is the tendency for an otherwise undi­
rected eye to follow visual motion in the absence of vestibular cues. A-eye's visual 
motion map is in motor coordinates. By directing the camera in the opposite di­
rection from observed motion, residual errors in VOR can be reduced. 

6 Application 

We claim that the stabilization that results from a correctly calibrated VOR is 
useful both for navigation and scene analysis. A stable inertial reference can act 
to assist tactical navigation when traversing rough terrain. Large body attitude 
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Figure 5: A correct transfer function (rough) and the learned (smoother) approx­
imation. 

changes, that can result from such travel, make it difficult to maintain a navigational 
bearing. However, when there exists a relatively stable inertial reference fr :lme less 
analysis need be performed to predict or sense changes in bearing by other means. 

The VOR is especially applicable to legged vehicles, where the terrain and the form 
of locomotion can cause constant rapid changes in attitude [Rai89] [Ang89]. The 
task of adapting conventional vision systems to such vehicles is formidable. As 
the rate of pitching increases. the quality of video images degrade, while the task 
of finding a correspondence between successive images will increase in complexity. 
With the addition of the visual stabilization that A-eye can provide, an otherwise 
complex visual analysis task can be much simplified. 

7 Conclusions 

A-eye is in part a response to the observation that static calibration is a disastrous 
weakness. Static calibration not only forces an engineer to expend additional effort 
at design time. it requires constant performance monitoring and recalibration. By 
creating a device that monitors its own performance and adapts to changes. signif­
icant work can be saved in design and at numerous times during the lifetime of the 
device. 

A-eye is also in part a confirmation that simple. tractable and reliable learning 
. mechanisms are sufficient to perform useful motor learning. 

Finally. A-eye is in part a demonstration that useful visual processing can be per­
formed in real-time with an reasonable amount of computation. This processing 
yields the additional side-benefit of simplifying the complex task of visual recogni­
tion. 
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