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ABSTRACT 
The mapping of the back-propagation and mean field theory 
learning algorithms onto a generic 2-D SIMD computer is 
described. This architecture proves to be very adequate for these 
applications since efficiencies close to the optimum can be 
attained. Expressions to find the learning rates are given and 
then particularized to the DAP array procesor. 

1 INTRODUCTION 
The digital simulation of connectionist learning algorithms is flexible and 
accurate. However, with the exception of very small networks, conventional 
computer architectures spend a lot of time in the execution of simulation 
software. Parallel computers can be used to reduce the execution time. Vector­
pipelined, multiprocessors, and array processors are some of the most important 
classes of parallel computers3 . Connectionist or neural net (NN) learning 
algorithms have been mapped onto all of them. 

The focus of this contribution is on the mapping of the back-propagation (BP) 
and mean field theory (MFT) learning algorithms onto the subclass of SIMD 
computers with the processors arranged in a square two-dimensional mesh and 
interconnected by nearest-neighbor links. 

The material is organized as follows. In section 2, the execution cost of BP and 
MFT on sequential computers is found. Two-dimensional SIMD processor arrays 
are described in section 3, and the costs of the two dominanting operations in the 
simulations are derived. In section 4 the mapping of BP and MFT is I;ommented 

* Current address: Motorola Inc., 1301 E Algonquin Rd., Schaumburg, IL 60196 



Performance of Connectionist Learning Algorithms 811 

and expressions for the learning rates are obtained. These expressions are 
particularized to the DAP computer in section 5. Section 6 concludes this work. 

2 BACK-PROPAGATION AND MEAN FIELD THEORY 
In this paper, two learning algorithms: Bp7 and MFT4; and 3-layer nets are 
considered. The number of neurons in the input, hidden, and output layer is I, H, 
and 0 respectively. BP has been used in many applications. Probably, NETtalk8 

is the best known. MFT can also be used to learn arbitrary mappings between 
two sets, and remarkably, to find approximate solutions to hard optimization 
problems much more efficiently than a Boltzmann Machine does4,5. 

The output of a neuron i will be denoted as Vi and called value: 

Vj = f ( ~ajjvj - OJ). The summation represents the net input received and will 
j'l"j 

be called activation. The neuron thresold is OJ. A sigmoid-like function f is 
applied to find the value. The weight of the link from neuron j to neuron i is ajj. 

Since input patterns are the values of the I layer, only neuron values and 
activations of the Hand 0 layers must be computed. In BP, the activation error 
and the value error of the Hand 0 layers are calculated and used to change the 
weights. 

In a conventional computer, the execution time of BP is approximately the time 
spent in finding the activations, back-propagating the activation error of the 0 
layer, and modifying the I-H and H-O weights. The result is: (21 + 30)Htm' 
where tm is the time required to perform a multiply/accumulate operation. Since 
the net has (I + O)H connections, the learning rate in connections per second is: 

f- 1+ 0 CPS 
NBP = (21 + 30)tm 

In the MFT algorithm, only from the neuron values in equilibrium at the end of 
the clamped and free annealing phases we can compute the weight increments. It 
is assumed that in both phases there are A annealing temperature~ ~nd that E 
iterations are enough to reach equilibrium at each temperature4,5. With these 
changes, MFT is now a deterministic algorithm where the anne ft ling phases are 
composed of AE sweeps. The MFT execution time can be apprl·"jmated by the 
time spent in computing activations in the annealing loops. T J,ing into account 
that in. the clamped phase only the H layer is updated, and tha ', in the free phase 
both, the Hand 0 layers change their values, the MFT leaning performance is 
found to be: 

tMFT = tBP 
AE 

CPS 

MFT is AE times more expensive than BP. However, the learning qualities of 
both algorithms are different and such a direct cOP'tJarison is simplistic. 
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3 2-D SIMD PROCESSOR ARRAYS 
Two-dimensional single instruction multiple data stream (2-D SIMD) computers 
are very efficient in the simulation of NN learning algorithms. They can provide 
massive parallelism at low cost. An SIMD computer is an array of processing 
elements (PEs) that execute the same instruction in each cycle. There is a single 
control unit that broadcasts instructions to all the PEs. SIMD architectures 
operate in a synchronous, lock-step fashion3 • They are also called array procesors 
because their raison cfetre is to operate on vectors and matrices. 

Example SIMD computers are the Illiac-IV, the Massively Parallel Processor 
(MPP), the Connection Machine (CM), and the Distributed Array Processor 
(DAP). With the exception of the CM, whose PE interconnection topology is a 
hypercube, the other three machines are 2-D SThAD arrays because their PEs are 
interconnected by a 2-D mesh with wrap-around links (figure 1). 

CONTROL 
UNIT 

Figure 1: A 2-D SIMD Processor Array 

1----4 pp 

Each PE has its own local memory. The instruction has an address field to access 
it. The array memory space can be seen as a 3-D volume. This volume is 
generated by the PE plane, and the depth is the number of memory words that 
each PE can address. When the control unit issues an address, a plane of the 
memory volume is being referenced. Then, square blocks of PxP elements are the 
natural addressing unit of 2-D SThAD processor arrays. There is an activity bit 
register in each PE to disable the execution of instructions. This is useful to 
perform operations with a subset of the PEs. It is assumed that there is no 
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overlapping between data processing an data moving operations. In other words, 
PEs can be either performing some operation on data (this includes accessing the 
local memory) or exchanging data with other processors. 

3.1 MAPPING THE TWO BASIC OPERATIONS 

It is characteristic of array processors that the way data is allocated into the PEs 
memories has a very important effect on performance. For our purposes, two 
data structures must be considered: vectors and matrices. The storage of vectors 
is illustrated in figure 2-a. There are two modes: row and column. A vector is 
split into P-element subvectors stored in the same memory plane. Very large 
vectors will require two or more planes. The storage of matrices is also very 
simple. They must be divided into square PXP blocks (figure 2-b). The shading 
in figure 2 indicates that, in general, the sizes of vectors and matrices do not fit 
the array dimensions perfectly. 

p 
(a) 

~P § 
(b) 

row 

[IIJ 
column 

Figure 2: (a) Vector and (b) Matrix Storage 

The execution time of BP and MFT in a 2-D SIMD computer is spent, almost 
completely, in matrix-vector multiply (MVM) and vector outer 
multiply/accumulate (VOM) operations. They can be decomposed in the 
following simpler operations involving PxP blocks. 

a) Addition (+): C = A + B such that eij = aij + bij. 
b) Point multiply/accumulate (-): a = C + A-B such that e'ij = eij + aijbij• 
c) Unit rotation: The result block has the same elements than the original, but 
rotated one place in one of the four possible directions (N, E, W, and S). 
d) Row (column) broadcast: The result of the row (column) broadcast of a vector 
x stored in row (column) mode is a block X such that xii = Xj ( = Xi). 

The time required to execute a, b, c, and d will be denoted as tll' tm , t,., and t6 
respectively. Next, let us see how the operation y = Ax (MVM) is decomposed in 
simpler steps using the operations above. Assume that x and yare P-element 
vectors, and A is a PXP block. 
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1) Row-broadcast vector x. 
2) Point multiply Y = A·X. 

3) Row addition of block Y, Yi = f'llij = t aijxj' This requires flOg2pl steps. In 
j=1 j-l 

each step multiple rotations and one addition are performed. Figure 3 shows how 
eight values in the same row are added using the recursive doubling technique. 
Note that the number of rotations doubles in each step. The cost is: 
Ptr + log2Pto' Row addition is an inefficient operation because of the large cost 
due to communication. Fortunately, for larger data its importance can be 
diminished by using the scheduling described nextly. 

00000000 
....- ....- ....- ....-
+ + + + 

• .. 
+ + .. 
+ 

Figure 3: Recursive Doubling 

Suppose that x, y, and A have dimensions m = MP, n = NP, and nxm 
respectively. Then, y = Ax must be partitioned into a sequence of non­
partitioned block operations as the one explained above. We can write: 

M M M 
yi = ~Aijxj = ~(Aij·Xj)u = (~Aij.Xj)u 

j=1 j=1 j=1 

In this expression, yi and x j represent the i-th and i-th P-element subvector of y 

and x respectively, and A ij is the PxP block of A with indices i and i. Block Xi 
is the result of row-broadcasting xj (x is stored in row mode.) Finally, u is a 
vector with all its P-elements equal to 1. Note that in the second term M column 
additions are implicit, while only one is required in the third term because blocks 
instead of vectors are accumulated. Since 'II has N subvectors, and the M 
subvectors of x are broadcast only once, the total cost of the MVM operation is: 

Mter a similar development, the cost of the YOM ( At = A + yx T ) operation is: 
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If the number of neurons in each layer is not an integer multiple of P, the storage 
and execution efficiencies decrease. This effect is less important in large networks. 

4 LEARNING RATES ON 2-D SIMD COMPUTERS 

4.1 BACK-PROPAGATION 

The neuron val~es, activations, value errors, activation errors, and thresolds of 
the Hand 0 layers are organized as vectors. The weights are grouped into two 
matrices: I-H and H-O. Then, the scalar operations of the original algorithm are 
transformed into matrix-vector operations. 

From now on, the size of the input, hidden, and output layers will be IP, HP, and 
OP. .A13 commented before, the execution time is mostly spent in computing 
activations, values, their errors, and in changing the weights. To compute 
activations, and to back-propagate the activation error of the 0 layer MVM 
operations are performed. The change of weights requires YOM operations. Alter 
substituting the expressions of the previous section, the time required to learn a 
pattern simulating BP on a 2-D SIMD computer is: 

The time spent in data communication is given by the factors in tr and t,. The 
larger they are, the smaller is the efficiency. For array processors with fast 
broadcast facilities, and for nets large enough in terms of the array dimensions, 
the efficiency grows since a smaller fraction of the total execution time is 
dedicated to moving data. Since the net has (I + O)HP2 connections, the 
learning rate is p2 times greater than using a single PE: 

f.. (I + O)p2 CPS 
NSIMD-BP = (21 + 30)tm 

4.2 MEAN FIELD THEORY 

The operations outside the annealing loops can be neglected with small error. In 
consequence, only the computation of activations in the clamped and free 
annealing phases is accounted for: 

AE((21 + 30)Htm + {21 + H + 20)t, + (2H + O)(Ptr + log2Pta)) 

Under the same favorable conditions above mentioned, the learning rate is: 

_ (I + O)P2 
!:SIMD-MFT - AE(21 + 30)tm CPS 
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() LEARNING PERFORMANCE ON THE DAP 
The DAP is a commercial 2-D SIMD processor array developed by lCL. It is a 
massively parallel computer with bit-level PEs built around a single-bit full 
adder. In addition to the 2-D PE interconnection mesh, there are row and column 
broadcast buses that allow the direct transfer of data from any processor row or 
column to an edge register. Many instructions require a single clock cycle leading 
to very efficient codings of loop bodies. The DAP-510 computer features 25 x25 

PEs with a maximum local memory of 1Mbit per PE. The DAP-610 has 26x26 

PEs, and the maximum local memory IS 64Kbit. The clock cycle in both 
machines is 100 nsl. 

With bit-level processors it is possible to tailor the preCISIon of fixed-point 
computations to the minimum required by the application. The costs in cycles 
required by several basic operations are given below. These expressions are 
function of the number of bits of the operands, that has been assumed to be the 
same for all of them: b bits. 

The time required by the DAP to perform a block addition, point 
multiplication/accumulation, and broadcast is to = 2b, tm = 2b 2 , and t6 = 8b 
clock cycles respectively. On the other hand, P + 2b log2P cycles is the duration 
of a row addition. Let us take b = 8 bits, and AE = 24. This values have been 
found adequate in many applications. Then, the maximum learning rates of the 
DAP-610 (P = 64) are: 

BP: 100-160 MCPS MFT: 4.5-6.6 MCPS 

where MCPS = 106 CPS. These figures are 4 times smaller for the DAP-510. It is 
worth to mention that the performance decreases quadratically with b. The two 
learning rates of each algorithm correspond to the worst and best case topology. 

6.1 EXAMPLES 

Let us consider a one-thousand neuron net with 640, 128, and 256 neurons in the 
input, hidden, and output layer. For the DAP-610 we have 1= 10, H = 2, and 
o = 4. The other parameters are the same than used above. After substituting, 
we see that the communication costs are less than 10% of the total, 
demonstrating the efficiency of the DAP in this type of applications. The learning 
rates are: 

BP: 140 MCPS MFT: 5.8 MCPS 

NETtalk10 is frequently used as a benchmark in order to compare the 
performance achieved on different computers. Here, a network with similar 
dimensions is considered: 224 input, 64 hidden, and 32 output neurons. These 
dimensions fit perfectly into the DAP-510 since P = 32. ~ before, a data 
precision of 8 bits has been taken. However, the fact than the input patterns are 
binary has been exploited to obtain some savings. 

The performance reached in this case is 50 MCPS. Even though NETtalk is a 
relatively small network, only 30% of the total execution time is spent in data 
communication. If the DAP-610 were used, somewhat less than 200 MCPS would 
be learnt since the output layer is smaller than P what causes some inefficiency. 
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Finally, BP learning rates of the DAP-610 with 8- and 16-bit operands are 
compared to those obtained by other machines below2,6: 

COMPUTER 

VAX 780 
CRAY-2 
CM (65K PEs) 
DAP-610 (8 bits) 
DAP-610 (16 bits) 

6 CONCLUSIONS 

MCPS 

0.027 
7 
13 
100-160 
25-40 

Two-dimensional SThfl) array processors are very adequate for the simulation of 
connectionist learning algorithms like BP and :MFT. These architectures can 
execute them at nearly optimum speed if the network is large enough, and there is 
full connectivity between layers. Other much more costly parallel architectures 
are outperformed. 

The mapping approach described in this paper can be easily extended to any 
network topology with dense blocks in its global interconnection matrix. 
However, it is obvious that 2-D SIMD arrays are not a good option to simulate 
networks with random sparse connectivity. 
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