
810 Nunez and Fortes

Performance of Connectionist Learning Algorithms
on 2-D SIMD Processor Arrays

Fernando J. Nunez* and Jose A.B. Fortes
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

ABSTRACT
The mapping of the back-propagation and mean field theory
learning algorithms onto a generic 2-D SIMD computer is
described. This architecture proves to be very adequate for these
applications since efficiencies close to the optimum can be
attained. Expressions to find the learning rates are given and
then particularized to the DAP array procesor.

1 INTRODUCTION
The digital simulation of connectionist learning algorithms is flexible and
accurate. However, with the exception of very small networks, conventional
computer architectures spend a lot of time in the execution of simulation
software. Parallel computers can be used to reduce the execution time. Vector­
pipelined, multiprocessors, and array processors are some of the most important
classes of parallel computers3 . Connectionist or neural net (NN) learning
algorithms have been mapped onto all of them.

The focus of this contribution is on the mapping of the back-propagation (BP)
and mean field theory (MFT) learning algorithms onto the subclass of SIMD
computers with the processors arranged in a square two-dimensional mesh and
interconnected by nearest-neighbor links.

The material is organized as follows. In section 2, the execution cost of BP and
MFT on sequential computers is found. Two-dimensional SIMD processor arrays
are described in section 3, and the costs of the two dominanting operations in the
simulations are derived. In section 4 the mapping of BP and MFT is I;ommented

* Current address: Motorola Inc., 1301 E Algonquin Rd., Schaumburg, IL 60196

Performance of Connectionist Learning Algorithms 811

and expressions for the learning rates are obtained. These expressions are
particularized to the DAP computer in section 5. Section 6 concludes this work.

2 BACK-PROPAGATION AND MEAN FIELD THEORY
In this paper, two learning algorithms: Bp7 and MFT4; and 3-layer nets are
considered. The number of neurons in the input, hidden, and output layer is I, H,
and 0 respectively. BP has been used in many applications. Probably, NETtalk8

is the best known. MFT can also be used to learn arbitrary mappings between
two sets, and remarkably, to find approximate solutions to hard optimization
problems much more efficiently than a Boltzmann Machine does4,5.

The output of a neuron i will be denoted as Vi and called value:

Vj = f (~ajjvj - OJ). The summation represents the net input received and will
j'l"j

be called activation. The neuron thresold is OJ. A sigmoid-like function f is
applied to find the value. The weight of the link from neuron j to neuron i is ajj.

Since input patterns are the values of the I layer, only neuron values and
activations of the Hand 0 layers must be computed. In BP, the activation error
and the value error of the Hand 0 layers are calculated and used to change the
weights.

In a conventional computer, the execution time of BP is approximately the time
spent in finding the activations, back-propagating the activation error of the 0
layer, and modifying the I-H and H-O weights. The result is: (21 + 30)Htm'
where tm is the time required to perform a multiply/accumulate operation. Since
the net has (I + O)H connections, the learning rate in connections per second is:

f- 1+ 0 CPS
NBP = (21 + 30)tm

In the MFT algorithm, only from the neuron values in equilibrium at the end of
the clamped and free annealing phases we can compute the weight increments. It
is assumed that in both phases there are A annealing temperature~ ~nd that E
iterations are enough to reach equilibrium at each temperature4,5. With these
changes, MFT is now a deterministic algorithm where the anne ft ling phases are
composed of AE sweeps. The MFT execution time can be apprl·"jmated by the
time spent in computing activations in the annealing loops. T J,ing into account
that in. the clamped phase only the H layer is updated, and tha ', in the free phase
both, the Hand 0 layers change their values, the MFT leaning performance is
found to be:

tMFT = tBP
AE

CPS

MFT is AE times more expensive than BP. However, the learning qualities of
both algorithms are different and such a direct cOP'tJarison is simplistic.

812 Nunez and Fortes

3 2-D SIMD PROCESSOR ARRAYS
Two-dimensional single instruction multiple data stream (2-D SIMD) computers
are very efficient in the simulation of NN learning algorithms. They can provide
massive parallelism at low cost. An SIMD computer is an array of processing
elements (PEs) that execute the same instruction in each cycle. There is a single
control unit that broadcasts instructions to all the PEs. SIMD architectures
operate in a synchronous, lock-step fashion3 • They are also called array procesors
because their raison cfetre is to operate on vectors and matrices.

Example SIMD computers are the Illiac-IV, the Massively Parallel Processor
(MPP), the Connection Machine (CM), and the Distributed Array Processor
(DAP). With the exception of the CM, whose PE interconnection topology is a
hypercube, the other three machines are 2-D SThAD arrays because their PEs are
interconnected by a 2-D mesh with wrap-around links (figure 1).

CONTROL
UNIT

Figure 1: A 2-D SIMD Processor Array

1----4 pp

Each PE has its own local memory. The instruction has an address field to access
it. The array memory space can be seen as a 3-D volume. This volume is
generated by the PE plane, and the depth is the number of memory words that
each PE can address. When the control unit issues an address, a plane of the
memory volume is being referenced. Then, square blocks of PxP elements are the
natural addressing unit of 2-D SThAD processor arrays. There is an activity bit
register in each PE to disable the execution of instructions. This is useful to
perform operations with a subset of the PEs. It is assumed that there is no

Performance of Connectionist Learning Algorithms 813

overlapping between data processing an data moving operations. In other words,
PEs can be either performing some operation on data (this includes accessing the
local memory) or exchanging data with other processors.

3.1 MAPPING THE TWO BASIC OPERATIONS

It is characteristic of array processors that the way data is allocated into the PEs
memories has a very important effect on performance. For our purposes, two
data structures must be considered: vectors and matrices. The storage of vectors
is illustrated in figure 2-a. There are two modes: row and column. A vector is
split into P-element subvectors stored in the same memory plane. Very large
vectors will require two or more planes. The storage of matrices is also very
simple. They must be divided into square PXP blocks (figure 2-b). The shading
in figure 2 indicates that, in general, the sizes of vectors and matrices do not fit
the array dimensions perfectly.

p
(a)

~P §
(b)

row

[IIJ
column

Figure 2: (a) Vector and (b) Matrix Storage

The execution time of BP and MFT in a 2-D SIMD computer is spent, almost
completely, in matrix-vector multiply (MVM) and vector outer
multiply/accumulate (VOM) operations. They can be decomposed in the
following simpler operations involving PxP blocks.

a) Addition (+): C = A + B such that eij = aij + bij.
b) Point multiply/accumulate (-): a = C + A-B such that e'ij = eij + aijbij•
c) Unit rotation: The result block has the same elements than the original, but
rotated one place in one of the four possible directions (N, E, W, and S).
d) Row (column) broadcast: The result of the row (column) broadcast of a vector
x stored in row (column) mode is a block X such that xii = Xj (= Xi).

The time required to execute a, b, c, and d will be denoted as tll' tm , t,., and t6
respectively. Next, let us see how the operation y = Ax (MVM) is decomposed in
simpler steps using the operations above. Assume that x and yare P-element
vectors, and A is a PXP block.

814 Nunez and Fortes

1) Row-broadcast vector x.
2) Point multiply Y = A·X.

3) Row addition of block Y, Yi = f'llij = t aijxj' This requires flOg2pl steps. In
j=1 j-l

each step multiple rotations and one addition are performed. Figure 3 shows how
eight values in the same row are added using the recursive doubling technique.
Note that the number of rotations doubles in each step. The cost is:
Ptr + log2Pto' Row addition is an inefficient operation because of the large cost
due to communication. Fortunately, for larger data its importance can be
diminished by using the scheduling described nextly.

00000000
....----
+ + + +

• ..
+ + ..
+

Figure 3: Recursive Doubling

Suppose that x, y, and A have dimensions m = MP, n = NP, and nxm
respectively. Then, y = Ax must be partitioned into a sequence of non­
partitioned block operations as the one explained above. We can write:

M M M
yi = ~Aijxj = ~(Aij·Xj)u = (~Aij.Xj)u

j=1 j=1 j=1

In this expression, yi and x j represent the i-th and i-th P-element subvector of y

and x respectively, and A ij is the PxP block of A with indices i and i. Block Xi
is the result of row-broadcasting xj (x is stored in row mode.) Finally, u is a
vector with all its P-elements equal to 1. Note that in the second term M column
additions are implicit, while only one is required in the third term because blocks
instead of vectors are accumulated. Since 'II has N subvectors, and the M
subvectors of x are broadcast only once, the total cost of the MVM operation is:

Mter a similar development, the cost of the YOM (At = A + yx T) operation is:

Performance of Connectionist Learning Algorithms 815

If the number of neurons in each layer is not an integer multiple of P, the storage
and execution efficiencies decrease. This effect is less important in large networks.

4 LEARNING RATES ON 2-D SIMD COMPUTERS

4.1 BACK-PROPAGATION

The neuron val~es, activations, value errors, activation errors, and thresolds of
the Hand 0 layers are organized as vectors. The weights are grouped into two
matrices: I-H and H-O. Then, the scalar operations of the original algorithm are
transformed into matrix-vector operations.

From now on, the size of the input, hidden, and output layers will be IP, HP, and
OP. .A13 commented before, the execution time is mostly spent in computing
activations, values, their errors, and in changing the weights. To compute
activations, and to back-propagate the activation error of the 0 layer MVM
operations are performed. The change of weights requires YOM operations. Alter
substituting the expressions of the previous section, the time required to learn a
pattern simulating BP on a 2-D SIMD computer is:

The time spent in data communication is given by the factors in tr and t,. The
larger they are, the smaller is the efficiency. For array processors with fast
broadcast facilities, and for nets large enough in terms of the array dimensions,
the efficiency grows since a smaller fraction of the total execution time is
dedicated to moving data. Since the net has (I + O)HP2 connections, the
learning rate is p2 times greater than using a single PE:

f.. (I + O)p2 CPS
NSIMD-BP = (21 + 30)tm

4.2 MEAN FIELD THEORY

The operations outside the annealing loops can be neglected with small error. In
consequence, only the computation of activations in the clamped and free
annealing phases is accounted for:

AE((21 + 30)Htm + {21 + H + 20)t, + (2H + O)(Ptr + log2Pta))

Under the same favorable conditions above mentioned, the learning rate is:

_ (I + O)P2
!:SIMD-MFT - AE(21 + 30)tm CPS

816 Nunez and Fortes

() LEARNING PERFORMANCE ON THE DAP
The DAP is a commercial 2-D SIMD processor array developed by lCL. It is a
massively parallel computer with bit-level PEs built around a single-bit full
adder. In addition to the 2-D PE interconnection mesh, there are row and column
broadcast buses that allow the direct transfer of data from any processor row or
column to an edge register. Many instructions require a single clock cycle leading
to very efficient codings of loop bodies. The DAP-510 computer features 25 x25

PEs with a maximum local memory of 1Mbit per PE. The DAP-610 has 26x26

PEs, and the maximum local memory IS 64Kbit. The clock cycle in both
machines is 100 nsl.

With bit-level processors it is possible to tailor the preCISIon of fixed-point
computations to the minimum required by the application. The costs in cycles
required by several basic operations are given below. These expressions are
function of the number of bits of the operands, that has been assumed to be the
same for all of them: b bits.

The time required by the DAP to perform a block addition, point
multiplication/accumulation, and broadcast is to = 2b, tm = 2b 2 , and t6 = 8b
clock cycles respectively. On the other hand, P + 2b log2P cycles is the duration
of a row addition. Let us take b = 8 bits, and AE = 24. This values have been
found adequate in many applications. Then, the maximum learning rates of the
DAP-610 (P = 64) are:

BP: 100-160 MCPS MFT: 4.5-6.6 MCPS

where MCPS = 106 CPS. These figures are 4 times smaller for the DAP-510. It is
worth to mention that the performance decreases quadratically with b. The two
learning rates of each algorithm correspond to the worst and best case topology.

6.1 EXAMPLES

Let us consider a one-thousand neuron net with 640, 128, and 256 neurons in the
input, hidden, and output layer. For the DAP-610 we have 1= 10, H = 2, and
o = 4. The other parameters are the same than used above. After substituting,
we see that the communication costs are less than 10% of the total,
demonstrating the efficiency of the DAP in this type of applications. The learning
rates are:

BP: 140 MCPS MFT: 5.8 MCPS

NETtalk10 is frequently used as a benchmark in order to compare the
performance achieved on different computers. Here, a network with similar
dimensions is considered: 224 input, 64 hidden, and 32 output neurons. These
dimensions fit perfectly into the DAP-510 since P = 32. ~ before, a data
precision of 8 bits has been taken. However, the fact than the input patterns are
binary has been exploited to obtain some savings.

The performance reached in this case is 50 MCPS. Even though NETtalk is a
relatively small network, only 30% of the total execution time is spent in data
communication. If the DAP-610 were used, somewhat less than 200 MCPS would
be learnt since the output layer is smaller than P what causes some inefficiency.

Performance of Connectionist Learning Algorithms 817

Finally, BP learning rates of the DAP-610 with 8- and 16-bit operands are
compared to those obtained by other machines below2,6:

COMPUTER

VAX 780
CRAY-2
CM (65K PEs)
DAP-610 (8 bits)
DAP-610 (16 bits)

6 CONCLUSIONS

MCPS

0.027
7
13
100-160
25-40

Two-dimensional SThfl) array processors are very adequate for the simulation of
connectionist learning algorithms like BP and :MFT. These architectures can
execute them at nearly optimum speed if the network is large enough, and there is
full connectivity between layers. Other much more costly parallel architectures
are outperformed.

The mapping approach described in this paper can be easily extended to any
network topology with dense blocks in its global interconnection matrix.
However, it is obvious that 2-D SIMD arrays are not a good option to simulate
networks with random sparse connectivity.

Acknow ledgements

This work has been supported by the Ministry of Education and Science of Spain.

References

[1] (1988) AMT DAP Series, Technical Overview. Active Memory Technology.

[2] G. Blelloch & C. Rosenberg. (1987) Network Learning on the Connection
Machine. Proc. 10th Joint Coni. on Artificial Intelligence, IJCA Inc.

[3] K. Hwang & F. Briggs. (1984) Computer Architecture and Parallel Processing,
McGraw-Hill.

[4] C. Peterson & J. Anderson. (1987) A Mean Field Theory Learning Algorithm
for Neural Networks. Complex Systems, 1:995-1019.

[5] C. Peterson & B. Soderberg. (1989) A New Method For Mapping Optimization
Problems onto Neural Networks. Int'/ J. 01 Neural Systems, 1(1):3-22.

[6] D. Pomerleau, G. Gusciora, D. Touretzky & H.T. Kung. (1988) Neural
Network Simulation at Warp Speed: How We Got 17 Million Connections per
Second. Proc. IEEE Int'l Coni. on Neural Networks, 11:143-150.

[7] D. Rumelhart, G. Hinton & R. Williams. (1986) Learning Representations by
Back-Propagating Errors. Nature, (323):533-536.

[8] T. Sejnowski & C. Rosenberg. (1987) Parallel Networks that Learn to
Pronounce English Text. Complex Systems, 1:145-168.

