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ABSTRACT 

This work introduces a new method called Self Organizing Neural 
Network (SONN) algorithm and compares its performance with Back 
Propagation in a signal separation application. The problem is to 
separate two signals; a modem data signal and a male speech signal, 
added and transmitted through a 4 khz channel. The signals are sam­
pled at 8 khz, and using supervised learning, an attempt is made to 
reconstruct them. The SONN is an algorithm that constructs its own 
network topology during training, which is shown to be much smaller 
than the BP network, faster to trained, and free from the trial-and­
error network design that characterize BP. 

1. INTRODUCTION 
The research in Neural Networks has witnessed major changes in algorithm design 
focus, motivated by the limitations perceived in the algorithms available at the 
time. With the extensive work performed in that last few years using multilayered 
networks, it was soon discovered that these networks present limitations in tasks 
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that: (a) are difficult to determine problem complexity a priori, and thus design 
network of the correct size, (b) training not only takes prohibitively long times, 
but requires a large number of samples as well as fine parameter adjustment, 
without guarantee of convergence, (c) such networks do not handle the system 
identification task efficiently for systems whose time varying structure changes 
radically, and, (d) the trained network is little more than a black box of weights 
and connections, revealing little about the problem structure; being hard to find 
the justification for the algorithm weight choice, or an explanation for the output 
decisions based on an input vector. We believe that this need is sparking the 
emergence of a third generation of algorithms to address such questions. 

2. THE SELF ORGANIZING NEURAL NETWORK 
ALGORITHM 

2.1 SELF ORGANIZING NETWORK FAMILY 

A family of Self Organizing Structure (SOS) Algorithms can be readily designed 
with our present knowledge, and can be used as a tool to research the motivating 
questions. Each individual algorithm in this family might have different charac­
teristics, which are summarized in the following list: 

- A search strategy for the structure of the final model 

- A rule of connectivity 

- A performance criteria 

- A transfer function set with appropriate training rule 

As we will show here, by varying each one of these components, a different 
behavior of the algorithm can be imposed. 

Self organizing structure algorithms are not new. These algorithms have been 
present in the statistical literature since the mid 70's in a very different context. 
As far as we know, the first one to propose such an algorithm was Ivahnenko 
[1971] which was followed by a host of variations on that original proposal 
[Duffy&Franklin, 1975; Ikeda, et al., 1976; Tomura&Kondo, 1980; Farlow,1989]. 
Ivahnenko's subfamily of algorithms (GMDH - Group Method of Data Handling) 
can be characterized in our classification by the same four-tuple criterion: (1) gra­
dient descent local search, (2) creation of regular feedforward layers with elements 
pairwisely connected, (3) least-mean-squares estimation, and (4) a single element 
set comprised of a 2 order bivariate function. 

Here we want to present our subfamily (SON - Self Organizing Networks) of the 
SOS algorithm family, characterized differently by: (1) global optimization search, 
(2) arbitrary connectivity based on an arbitrary number of neuron inputs, (3) 
Structure Estimation Criteria (SEC) (a variation of Rissanen's [1983]. Minimum 
Description Length Criteria, extended to the hierarchical case), and, (4) for train­
ing speed, activation functions are restricted to be linear on the parameters and 
the output functions need to be invertible, no other restriction is imposed in kind 
or number. The particular algorithm presented here is called the Self Organizing 
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Neural Network (SONN) [Tenorio&Lee, 1988,1989; Tenorio 1990 a,b]. It was com­
posed of: (1) a graph synthesis procedure based on Simulated Annealing [Kirkpa­
trick et a.1., 1983]; (2) two input neurons that a.re arbitrarily connected; (3) the 
Structure Estimation Criteria; a.nd, (4) a set of a.ll polynomials that a.re special 
ca.ses of 2nd order bivariates a.nd inclusive, followed or not by sigmoid functions. 
The SONN a.lgorithm performs a. search in the model space by the construction 
of hypersurfa.ces. A network of nodes, each node representing a. hypersurface, is 
organized to be a.n a.pproximate model of the real system. Below, the components 
of SONN a.re discussed. 

2.2 THE ALGORITHM STRUCTURE 

The mechanisms behind the a.lgorithm works as follows. First, create a. set of ter­
minals which a.re the output of the nodes a.vailable for connection to other nodes. 
This set is initialized with the output of the input nodes; in other words, the input 
variables themselves. From this set, with uniform probability, select a subset (2 in 
our case) of terminals, a.nd used them as inputs to the new node. To construct the 
new node, select a.ll the function of the set of prototype functions (activation fol­
lowed by output function), a.nd evaluate the SEC using the terminals as inputs. 
Selecting the best function, test for the acceptance of that node according to the 
Simulated Annealing move a.cceptance criterion. If the new node is a.ccepted, place 
its output in the set of terminals and iterate until the optimum model is found. 
The details or the a.lgorithm can be found in [Tenorio&Lee, 1989]. 

2.2.1 The Prototype Functions 

Consider the Mahalanobis distance: 

Yj =sig{(x-/-LPC-1 (x-/-L)t} (1 ) 

This distance ca.n be rewritten as a second order function, whose parameters are 
the indirect representation of the covariance matrix X and the mean vector /-L. 
This function is linear in the parameters, which makes it easy to perform training, 
a.nd it is the function with the smallest degree of non linearity; only simpler is the 
linear case. Interestingly enough, this is the same prototype function used in the 
GMDH a.lgorithm to form the Ivahnenko polynomial for apparently completely 
different reasons. In the SONN, this function is taken to be 2-input and all its pos­
sible variations (32) by setting parameters to zero are included in the set of 
a.ctivation functions. This set combined with the output function (the identify or 
sigmoid), for the set of prototype functions, used by the a.lgorithm in the node 
construction. 

2.2.2 Evaluation of the Model Based on the MDL Criterion 

The selection rule of the neuron transfer function was based on a modification of 
the Minimal Description Length (MOL) information criterion. In [Rissanen, 1978], 
the principle of minimal description for statistical estimation was developed. The 
reason for the choice of such a criterion is that, in general the accuracy of the 
model can increase at the expense of simplicity in the number oC parameters. The 
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increase of complexity might also be accompanied by the overfitting of the model. 
To overcome this problem, the MDL provides a trade-oft' between the accuracy 
and the complexity of the model by including the structure estimation term of the 
final model. The final model (with the minimal MDL) is optimum in the sense of 
being a consistent estimate of the number of parameters while achieving the 
minImUm error [Rissanen, 1980]. Given a sequence of observations 
Xl ,X2 , ••• ,XN from the random variable X, the dominant term of the MDL in 
[Rissanen, 1978] is: 

MDL = -log f(x Ie) +0.5 k log N (2) 

where f(x Ie) is the estimated probability density function of the model, k is the 
number of parameters, and N is the number of observations. The first term is 
actually the negative of the maximum likelihood (ML) with respect to the 
estimated parameter. The second term describes the structure of the models and it 
is used as a penalty for the complexity of the model. 

3. EXAMPLE - THE COCKTAIL PARTY PROBLEM 
The Cocktail Party Problem is the name given to the phenomenon that people 
can understand and track speech in a noisy environment, even when the noise is 
being made by other speakers. A simpler version of this problem is presented here: 
a 4 khz channel is excited with male speech and modem data additively at the 
same time. The task presented to the network is to separate both signals. 
To compare the accuracy of the signal separation between the SONN and the 

Back Propagation algorithms a normalized RMSE is used as a performance 
index: 

normalized RMSE ____ R_M_S_E __ _ 
StandardDevision 

(3) 

3.1. EXPERIMENTS WITH BACK PROPAGATION 

In order to design a filter using Back Propagation for this task, several architec­
tures were considered. Since the input and output to the problem are time series, 
and such architectures are static, modifications to the original paradigm is 
required to deal with the time dimension. Several proposals have been made in 
this respect: tapped delay filters, recurrent architectures, low pass filter transfer 
functions, modified discriminant functions, and self excitatory connections (see 
[Wah, Tenorio, Merha, and Fortes, 90] ). The best result for this task was 
achieved by two tapped delay lines in the input layer, one for the input signal, the 
other for the output signal. The network was trained to recognize the speech sig­
nal from the mixed signal. The mixed signal had a speech to modem data energy 
ratio of 4:1, or 2.5 dB. 

The network was designed to be a feedforward with 42 inputs (21 delayed versions 
of the input signal, and similarly for the output signal), 15 hidden units, and a 
single output unit. The network was trained with a single phoneme, taking about 
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10 cpu-hours on a Sequent machine. The network when presented with the trained 
phoneme added to the modem data, produced a speech reconstruct ability error 
equal to a nRMSE of 0.910. Previously several different configurations of the net­
work were tried as well as different network parameters, and signal ratios of 1:1; 
all with poor results. Few networks actually converged to a final solution. A 
major problem with the BP architecture is that it can perfectly filter the signal in 
the first few samples, just to later demonstrate increasing amounts of cumulative 
errors; this instability may be fruit of the recurring nature of the architecture, 
and suboptimal weight training (Figure 2). The difficulty in finding and fine tun­
ing the architecture, the training convergence, and time requirements led us to 
later stop pursuing the design of these filters with Back Propagation strategies. 

3.2. EXPERIMENTS WITH SONN 

At that time, the SONN algorithm had been successfully used for identification 
and prediction tasks [Tenorio&Lee; 88,89,90]. To make the task more realistic 
with possible practical utilization of this filter (Data-Over-Voice Circuits), the 
energy ratio between the voice and the modem data was reduced to 1:1, or 0 dB. 
A tapped delay line containing 21 delayed versions of the mixed signal was 
presented to the algorithm. Two sets of prototype functions were used, and both 
contained the full set of 32 variations of 2nd order bivariates. The first set had 
the identity (SONN-I experiments) and the second had a sigmoid (SONN-SIG 
experiments) as the output function for each node. 

SONN-I created 370 nodes, designing a final model with 5 nodes. The final sym­
bolic transfer function which represents the closed form function of the network 
was extracted. Using a Gould Powernode 9080, this search took 98.6 sec, with an 
average of 3.75 nodes/sec. The final model had an nRMSE of 0.762 (Figure 3) for 
reconstructed speech with the same BP data; with 19 weights. Training with the 
modem signalled to nRMSE of 0.762 (Figure 4) for the BP data. A search using 
the SONN-SIG model was allowed to generate 1000 nodes, designing a final model 
with 5 nodes. With the same computer, the second search took 283.42 sec, with an 
average 3.5 nodes/sec. The final model had an nRMSE comparable to the SONN-I 
(better by 5-10%); with 20 weights. The main characteristics of both signals were 
captured, specially if one looks at the plots and notices the same order of non­
linearity between the real and estimated signals (no over or under estimation). 
Because of the forgiving nature of the human speech perception, the voice after 
reconstruction, although sightly muffled, remains of good quality; and the recon­
structed modem signal can be used to reconstruct the original digital message, 
without much further post processing. The SONN does not present cumulative 
errors during the reconstruction, and when test with different (unseen, from the 
same speaker) speech data, performed as well as with the test data. We have yet 
to fully explore the implication of that to different speakers and with speaker of 
different gender or language. These results will be reported elsewhere. 

4. COMPARISON BETWEEN THE TWO ALGORITHMS 
Below we outline the comparison between the two algorithms drawn from our 
experience with this signal separation problem. 
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4.1. ADVANTAGES 

The following were advantages of the SONN approach over the BP paradigm. 
The most striking difference was found in the training times, and in the amount 
of data required for training. The BP required 42 inputs (memories), where as the 
SONN functioned with 21 inputs, actually using as few as 4 in the final model 
(input variable selection). The SONN removed the problem of model estimation 
and architecture design. The number of connections with the SONN models is as 
low as 8 for 20 weights (relevant connections), as compared with 645 connections 
and weights for the BP model. The accuracy and complexity of the model can be 
trade for learning time as in BP, but the models that were more accurate also 
required less parameters than BP. The networks are not required to be homogene­
ous, thus contributing to smaller models as well. Above all, the SONN can pro­
duce both the C code for the network as well as the sequence of individual node 
symbolic functions; the SONN-I can also produce the symbolic representation of 
the closed form function of he entire network. 

4.2. DISADVANTAGES 

Certain disadvantages of using self-organizing topology networks with stochastic 
optimization algorithms were also apparent. The learning time of the SONN is 
non deterministic, and depends on the model complexity and starting point. 
Those are characteristic of the Simulated Annealing (SA) algorithm. These disad­
vantages are also present in the BP approach for different reasons. The connec­
tivity of the model is not known a priori, which does not permit hardware imple­
mentation algorithms with direct connectivity emulation. Because the SONN 
selects nodes from a growing set with uniform probability, the probability of 
choosing a pair of nodes decreases with the inverse of the square of the number of 
nodes. Thus algorithm effectiveness decreases with processing time. Careful plot­
ting of the SEC, nRMSE, and complexity trajectories during training reveal that 
the first 10% of the processing time achieves 90% of the final steady state values. 
Biasing the node selection procedure might be an alternative to modify this 
behavior. Simulated Annealing also required parametric tuning of the algorithm 
by setting" the initial and final temperature, the duration of the search at each 
temperature and the temperature decay. Alternative algorithms such as A * might 
produce a better alternative to stochastic search algorithms. 

6. CONCLUSION AND FUTURE WORK 

In this study, we proposed a new approach for the signal separation filter design 
based on a flexible, self-organizi neural network (SONN) algorithm. The vari­
able structure provides the oppo; llity to search and construct the optimal model 
based on input-output observations. The hierarchical v' ton of the MDL, ' lIed 
the Structure Estimation Criteria, was used to guide .; trade-off betwel the 
model complexity and the accuracy of the estimation. The SONN approach 
demonstrates potential usefulness as a tool for non linear signal processing func­
tion design. 

We would like to explore the use of high level knowledge for function selection 
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and connectivity. Also, the issues involving estimator and deterministic searches 
are still open. Currently we are exploring the use of SONN for digital circuit syn­
thesis, and studying how close the architecture generated here can approach the 
design of natural structures when performing similar functions. More classification 
problems, and problems involving dynamical systems (adaptive control and signal 
processing) need to be explored to give us the experience needed to tackle the 
problems for which it was designed. 

6. NOTE 
The results reported here were originally intended for two papers accepted for 
presentation at the NIPS'89. The organizing committee asked us to fuse the into a 
single presentation for organizational purposes. In the limited time and the small 
space allocated for the presentation of these results, we sought a compromise 
between the reporting of the results and the description and comments on our 
experience with the algorithm. The interested reader should look at the other 
references about the SONN listed here and forthcoming papers. 
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