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Multi-layer perceptrons and trained classification trees are two very 
different techniques which have recently become popular. Given 
enough data and time, both methods are capable of performing arbi­
trary non-linear classification. We first consider the important 
differences between multi-layer perceptrons and classification trees 
and conclude that there is not enough theoretical basis for the clear­
cut superiority of one technique over the other. For this reason, we 
performed a number of empirical tests on three real-world problems 
in power system load forecasting, power system security prediction, 
and speaker-independent vowel identification. In all cases, even for 
piecewise-linear trees, the multi-layer perceptron performed as well 
as or better than the trained classification trees. 
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1 INTRODUCTION 
In this paper we compare regression and classification systems. A regression system 
can generate an output f for an input X, where both X and f are continuous and, 
perhaps, multi-dimensional. A classification system can generate an output class, C, 
for an input X, where X is continuous and multi-dimensional and C is a member of a 
finite alphabet. 

The statistical technique of Classification And Regression Trees (CART) was 
developed during the years 1973 (Meisel and Michalpoulos) through 1984 (Breiman el 
al). As we show in the next section, CART, like the multi-layer perceptron (MLP) , 
can be trained to solve the exclusive-OR problem. Furthermore, the solution it pro­
vides is extremely easy to interpret. Moreover, both CART and MLPs are able to pro­
vide arbitrary piecewise linear decision boundaries. Although there have been no 
links made between CART and biological neural networks, the possible applications 
and paradigms used for MLP and CART are very similar. 

The authors of this paper represent diverse interests in problems which have the com­
monality of being both important and potentially well-suited for trainable classifiers. 
The load forecasting problem, which is partially a regression problem, uses past load 
trends to predict the critical needs of future power generation. The power security 
problem uses the classifier as an interpolator of previously known states of the system. 
The vowel recognition problem is representative of the difficulties in automatic 
speech recognition due to variability across speakers and phonetic context. 

In each problem area, large amounts of real data were used for training and disjoint 
data sets were used for testing. We were careful to ensure that the experimental con­
ditions were identical for the MLP and CART. We concentrated only on performance 
as measured in error on the test set and did not do any formal studies of training or 
testing time. (CART was, in general, quite a bit faster.) 

In all cases, even with various sizes of training sets, the multi-layer perceptron per­
formed as well as or better than the trained classification trees. We also believe that 
integration of many of CART's well-designed attributes into MLP architectures could 
only improve the already promising performance of MLP's. 

2 BACKGROUND 

2.1 Multi-Layer Perceptrons 

The name "artificial neural networks" has in some commumbes become almost 
synonymous with MLP's trained by back-propagation. Our power studies made use of 
this standard algorithm (Rumelhart el ai, 1986) and our vowel studies made use of a 
conjugate gradient version (Barnard and Casasent, 1989) of back-propagation. In all 
cases the training data consisted of ordered pairs (X ,f)} for regression, or (X ,C)} 
for classification. The input to the network is X and the output is, after training, 
hopefully very close to f or C. 

When MLP's are used for regression, the output, f, can take on real values between 0 
and 1. This normalized scale was used as the prediction value in the power forecast­
ing problem. For MLP classifiers the output is formed by taking the (0,1) range of the 
output neurons and either thresholding or finding a peak. For example, in the vowel 
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study we chose the maximum of the 12 output neurons to indicate the vowel class. 

2.2 Classification and Regression Trees (CART) 

CART has already proven to be useful in diverse applications such as radar signal 
classification, medical diagnosis, and mass spectra classification (Breiman et ai, 1984). 
Given a set of training examples {(X ,C)}, a binary tree is constructed by sequentially 
partitioning the p -dimensional input space, which may consist of quantitative and/or 
qualitative data, into p -dimensional polygons. The trained classification tree divides 
the domain of the data into non-overlapping regions, each of which is assigned a class 
label C. For regression, the estimated function is piecewise constant over these re­
gions. 

The first split of the data space is made to obtain the best global separation of the 
classes. The next step in CART is to consider the partitioned training examples as two 
completely unrelated sets-those examples on the left of the selected hyper-plane, and 
those on the right. CART then proceeds as in the first step, treating each subset of the 
training examples independently. A question which had long plagued the use of such 
sequential schemes was: when should the splitting stop? CART implements a novel, 
and very clever approach; splits continue until every training example is separated 
from every other, then a pruning criterion is used to sequentially remove less impor­
tant splits. 

2.3 Relative Expectations of MLP and CART 

The non-linearly separable exclusive-OR problem is an example of a problem which 
both MLP and CART can solve with zero error. The left side of Figure 1 shows a 
trained MLP solution to this problem and the right side shows the very simple trained 
CART solution. For the MLP the values along the arrows represent trained multipli­
cative weights and the values in the circles represent trained scalar offset values. For 
the CART figure, y and n represent yes or no answers to the trained thresholds and the 
values in the circles represent the output Y. It is interesting that CART did not train 
correctly for equal numbers of the four different input cases and that one extra exam­
ple of one of the input cases was sufficient to break the symmetry and allow CART to 
train correctly. (Note the similarity to the well-known requirement of random and 
different initial weights for training the MLP). 
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Figure 1: The MLP and CART solutions to the exclusive-OR problem. 
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CART trains on the exclusive-OR very easily since a piecewise-linear partition in the 
input space is a perfect solution. In general, the MLP will construct classification re­
gions with smooth boundaries, whereas CART will construct regions with "sharp" 
comers (each region being, as described previously, an intersection of half planes). 
We would thus expect MLP to have an advantage when classification boundaries tend 
to be smooth and CART to have an advantage when they are sharper. 

Other important differences between MLP and CART include: 

For an MLP the number of hidden units can be selected to avoid overfitting or 
underfitting the data. CART fits the complexity by using an automatic pruning tech­
nique to adjust the size of the tree. The selection of the number of hidden units or the 
tree size was implemented in our experiments by using data from a second training set 
(independent of the first). 

An MLP becomes a classifier through an ad hoc application of thresholds or peak.­
picking to the output value(s). Great care has gone into the CART splitting rules 
while the usual MLP approach is rather arbitrary. 

A trained MLP represents an approximate solution to an optimization problem. The 
solution may depend on initial choice of weights and on the optimization technique 
used. For complex MLP's many of the units are independently and simultaneously 
adjusting their weights to best minimize output error. 

MLP is a distributed topology where a single point in the input space can have an 
effect across all units or analogously, one weight, acting alone, will have minimal 
affect on the outputs. CART is very different in that each split value can be mapped 
onto one segment in the input space. The behavior of CART makes it much more 
useful for data interpretation. A trained tree may be useful for understanding the 
structure of the data. The usefulness of MLP's for data interpretation is much less 
clear. 

The above points, when taken in combination, do not make a clear case for either 
MLP or CART to be superior for the best performance as a trained classifier. We thus 
believe that the empirical studies of the next sections, with their consistent perfor­
mance trends, will indicate which of the comparative aspects are the most significant. 

3 LOAD FORECASTING 

3.1 The Problem 

The ability to predict electric power system loads from an hour to several days in the 
future can help a utility operator to efficiently schedule and utilize power generation. 
This ability to forecast loads can also provide information which can be used to stra­
tegically trade energy with other generating systems. In order for these forecasts to be 
useful to an operator, they must be accurate and computationally efficient. 

3.2 Methods 

Hourly temperature and load data for the Seattle{facoma area were provided for us by 
the Puget Sound Power and Light Company. Since weekday forecasting is a more 
critical problem for the power industry than weekends, we selected the hourly data for 
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all Tuesdays through Fridays in the interval of November 1, 1988 through January 31, 
1989. These data consisted of 1368 hourly measurements that consisted of the 57 
days of data collected. 

These data were presented to both the MLP and the CART classifier as a 6-
dimensional input with a single, real-valued output. The MLP required that all values 
be normalized to the range (0,1). These same normalized values were used with the 
CART technique. Our training and testing process consisted of training the classifiers 
on 53 days of the data and testing on the 4 days left over at the end of January 1989. 
Our training set consisted of 1272 hourly measurements and our test set contained 96 
hourly readings. 

The MLP we used in these experiments had 6 inputs (Plus the trained constant bias 
term) 10 units in one hidden layer and one output. This topology was chosen by mak­
ing use of data outside the training and test sets. 

3.3 Results 

We used an 11 norm for the calculation of error rates and found that both techniques 
worked quite well. The average error rate for the :MLP was 1.39% and CART gave 
2.86% error. While this difference (given the number of testing points) is not statisti­
cally significant. it is worth noting that the trained MLP offers performance which is 
at least as good as the current techniques used by the Puget Sound Power and Light 
Company and is currently being verified for application to future load prediction. 

4 POWER SYSTEM SECURITY 
The assessment of security in a power system is an ongoing problem for the efficient 
and reliable generation of electric power. Static security addresses whether. after a 
disturbance. such as a line break or other rapid load change. the system will reach a 
steady state operating condition that does not violate any operating constraint and 
cause a "brown-out" or "black-out." 

The most efficient generation of power is achieved when the power system is operat­
ing near its insecurity boundary. In fact. the ideal case for efficiency would be full 
knowledge of the absolute boundaries of the secure regions. Due to the complexity of 
the power systems, this full knowledge is impossible. Load flow algorithms, which 
are based on iterative solutions of nonlinearly constrained equations, are conventional­
ly used to slowly and accurately determine points of security or insecurity. In real 
systems the trajectories through the regions are not predictable in fine detail. Also 
these changes can happen too fast to compute new results from the accurate load flow 
equations. 

We thus propose to use the sparsely known solutions of the load flow equations as a 
training set The test set consists of points of unknown security. The error of the test 
set can then be computed by comparing the result of the trained classifier to load flow 
equation solutions. 

Our technique for converting this problem to a problem for a trainable classifier in­
volves defining a training set ((X ,C») where X is composed of real power, reactive 
power, and apparent power at another bus. This 3-dimensional input vector is paired 
with the corresponding security status (C=l for secure and C=O for insecure). Since 
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the system was small, we were able to generate a large number of data points for 
training and testing. In fact, well over 20,000 total data points were available for the 
(disjoint) training and test sets. 

4.1 Results 

We observed that for any choice of training data set size, the error rate for the MLP 
was always lower than the rate for the CART classifier. At 10,000 points of training 
data, the MLP had an error rate of 0.78% and CART has an error rate of 1.46%. 
While both of these results are impressive. the difference was statistically significant 
(p>.99). 

In order to gain insight into the reasons for differences in importance, we looked at 
classifier decisions for 2-dimensional slices of the input space. While the CART 
boundary sometimes was a better match, certain pathological difficulties made CART 
more error-prone than the MLP. Our other studies also showed that there were worse 
interpolation characteristics for CART. especially for sparse data. Apparently, starting 
with nonlinear combinations of inputs. which is what the MLP does. is better for the 
accurate fit than the stair-steps of CART. 

5 SPEAKER-INDEPENDENT VOWEL CLASSIFICATION 
Speaker-independent classification of vowels excised from continuous speech is a most 
difficult task because of the many sources of variability that influence the physical 
realization of a given vowel. These sources of variability include the length of the 
speaker's vocal tract, phonetic context in which the vowel occurs, speech rate and 
syllable stress. 

To make the task even more difficult the classifiers were presented only with informa­
tion from a single spectral slice. The spectral slice, represented by 64 DFf 
coefficients (0-4 kHz), was taken from the center of the vowel, where the effects of 
coarticulation with surrounding phonemes are least apparent. 

The training and test sets for the experiments consisted of featural descriptions, X, 
paired with an associated class, C. for each vowel sample. The 12 monophthongal 
vowels of English were used for the classes. as heard in the following words: beat. bit. 
bet, bat. roses. the, but, boot, book. bought, cot, bird. The vowels were excised from 
the wide variety of phonetic contexts in utterances of the TIMIT database, a standard 
acoustic phonetic corpus of continuous speech, displaying a wide range of American 
dialectical variation (Fisher et ai, 1986) (Lamel et ai, 1986). The training set consist­
ed of 4104 vowels from 320 speakers. The test set consisted of 1644 vowels (137 oc­
currences of each vowel) from a different set of 100 speakers. 

The MLP consisted of 64 inputs (the DFf coefficients. each nonnalized between zero 
and one), a single hidden layer of 40 units, and 12 output units; one for each vowel 
category. The networks were trained using backpropagation with conjugate gradient 
optimization (Barnard and Casasent, 1989). The procedure for training and testing a 
network proceeded as follows: The network was trained on 100 iterations through the 
4104 training vectors. The trained network was then evaluated on the training set and 
a different set of 1644 test vectors (the test set). The network was then trained for an 
additional 100 iterations and again evaluated on the training and test sets. This pro­
cess was continued until the network had converged; convergence was observed as a 
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consistent decrease or leveling off of the classification percentage on the test data over 
successive sets of 100 iterations. 

The CART system was trained using two separate computer routines. One was the 
CART program from California Statistical Software; the other was a routine we 
designed ourselves. We produced our own routine to ensure a careful and independent 
test of the CART concepts described in (Breiman et ai, 1984). 

5.1 Results 

In order to better understand the results, we performed listening experiments on a sub­
set of the vowels used in these experiments. The vowels were excised from their sen­
tence context and presented in isolation. Five listeners first received training in the 
task by classifying 900 vowel tokens and receiving feedback about the correct answer 
on each trial. During testing, each listener classified 600 vowels from the test set (50 
from each category) without feedback. The average classification performance on the 
test set was 51%, compared to chance performance of 8.3%. Details of this experi­
ment are presented in (Muthusamy et ai, 1990). When using the scaled spectral 
coefficients to train both techniques, the MLP correctly classified 47.4% of the test set 
while CART employing uni-variate splits performed at only 38.2%. 

One reason for the poor performance of CART with un i-variate splits may be that 
each coefficient (corresponding to energy in a narrow frequency band) contains little 
information when considered independently of the other coefficients. For example, re­
duced energy in the 1 kHz band may be difficult to detect if the energy in the 1.06 
kHz band was increased by an appropriate amount. The CART classifier described 
above operates by making a series of inquiries about one frequency band at a time, an 
intuitively inappropriate approach. 

We achieved our best CART results, 46.4%, on the test set by making use of arbitrary 
hyper-planes (linear combinations) instead of univariate splits. This search-based ap­
proach gave results which were within 1 % of the MLP results. 

6 CONCLUSIONS 
In all cases the performance of the MLP was, in terms of percent error, better than 
CART. However, the difference in performance between the two classifiers was only 
significant (at the p >.99 level) for the power security problem. 

There are several possible reasons for the sometimes superior performance of the MLP 
technique, all of which we are currently investigating. One advantage may stem from 
the ability of MLP to easily find correlations between large numbers of variables. 
Although it is possible for CART to form arbitrary nonlinear decision boundaries, the 
efficiency of the recursive splitting process may be inferior to MLP's nonlinear fit. 
Another relative disadvantage of CART may be due to the successive nature of node 
growth. For example, if the first split that is made for a problem turns out, given the 
successive splits, to be suboptimal, it becomes very inefficient to change the first split 
to be more suitable. 

We feel that the careful statistics used in CART could also be advantageously applied 
to MLP. The superior performance of MLP is not yet indicative of best performance 
and it may turn out that careful application of statistics may allow further advance-
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ments in the MLP technique. It also may be possible that there would be input 
representations that would cause better performance for CART than for MLP. 

There have been new developments in trained statistical classifiers since the develop­
ment of CART. More recent techniques, such as projection pursuit (Friedman and 
Stuetzle, 1984), may prove as good as or superior to MLP. This continued interplay 
between MLP techniques and advanced statistics is a key part of our ongoing research. 
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