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Minimization of energy or error functions has proved to be a useful principle in 
the design and analysis of neural networks and neural algorithms. A brief list of 
examples include: the back- propagation algorithm, the use of optimization methods 
in computational vision, the application of analog networks to the approximate 
solution of NP complete problems and the Hopfield model of associative memory. 

In the Hopfield model associative memory, for instance, a quadratic Hamiltonian of 
the form 

x, = ±1 (1) 

is constructed to tailor a particular "landscape" on the n- dimensional hypercube 
H n = {-I, l}n and store memories at a particular subset of the local minima of F 
on Hn. The synaptic weights Wij are usually constructed incrementally, using a form 
of Hebb's rule applied to the patterns to be stored. These patterns are often chosen 
at random. As the number of stored memories grows to and beyond saturation, the 
energy function F becomes essentially random. In addition, in a general context of 
combinatorial optimization, every problem in NP can be (polynomially) reduced to 
the problem of minimizing a certain quadratic form over Hn. 

These two types of considerations, associative memory and combinatorial optimiza­
tion, motivate the study of the number and distribution of local minima of a ran­
dom function F defined over the hypercube, or more generally, any graph G. Of 
course, different notions of randomness can be introduced. In the case where F is a 
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quadratic form as in (1), we could take the coefficients Wij to be independent identi­
cally distributed gaussian random variables, which yields, in fact, the Sherrington­
Kirkpatrick long-range spin glass model of statistical physics. For this model, the 
expectation of the number of local minima is well known but no rigorous results 
have been obtained for its distribution (even the variance is not known precisely). 
A simpler model of randomness can then be introduced, where the values F(x) of 
the random function at each vertex are assigned randomly and independently from 
a common distribution: This is in fact the random energy model of Derrida (1981). 

2 THE MAIN RESULT 

In Baldi, Rinott and Stein (1989) the following general result on random energy 
models is proven. 

Let G = (V, E) be a regular d-graph, i.e., a graph where every vertex 
has the same number d of neighbors. Let F be a random function on V 
whose values are independentlY distributed with a common continuous 
distribution. Let W be the number of local minima of F, i.e., the number 
of vertices x satisfying F(x) > F(y) for any neighbor y of x (i.e., (x, Y)fE). 
Let EW = A and Var W = u2 • Then 

and for any positive real w: 

EW= ill 
d+1 

(2) 

(3) 

where 4> is the standard normal distribution and C is an absolute con­
stant. 

Remarks: 

(a) The proof of (3) ((2) is obvious) is based on a method developed in Stein (1986). 

(b) The bound given in the theorem is not asymptotic but holds also for small 
graphs. 

(c) If 1 V 1-+ 00 the theorem states that if u -+ 00 then the distribution of the 
number of local minima approaches a normal distribution and (3) gives also a bound 
of 0(u- 1/ 2 ) on the rate of convergence. 

(d) The function F simply induces a ranking (or a random permutation) of the 
vertices of G. 

(e) The bound in (3) may not be optimal. We suspect that the optimal rate should 
scale like u- 1 rather than u- 1/ 2 • 
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3 EXAMPLES OF APPLICATIONS 

(1) Consider a n x n square lattice (see fig.1) with periodic boundary conditions. 
Here, IVnl = n 2 and d = 4. The expected number of local minima is 

n2 
EWn =-

5 

and a simple calculations shows that 

13n2 

VarWn = 225 . 

(4) 

(5) 

Therefore Wn is asymptotically normal and the rate of convergence is bounded by 
O(n-l/2). 

(2) Consider a n x n square lattice, where this time the neighbors of a vertex v are 
all the points in same row or column as v (see fig.2). This example arises in game 
theory, where the rows (resp. columns) correspond to different possible strategies of 
one of two players. The energy value can be interpreted as the cost of the combined 
choice of two strategies. Here IVnl = n2 and d = 2n - 2. The expected number of 
local minima (the Nash equilibrium points of game theory) Wn is 

and 

n2 n 
EWn = ~-

2n-1 2 

n2(n - 1) n 
Var Wn = 2(2n _ 1)2 ~ S· 

(6) 

(7) 

Therefore Wn is asymptotically normal and the rate of convergence is bounded by 
O(n- 1/ 4). 

(3) Consider the n-dimensional hypercube H n = (Vn, En) (see fig.3). Then 1 Vn 1= 
2n and d = n. The expected number of local minima Wn is: 

and 

2n 
EWn= -- =An 

n+1 

2n - 1(n - 1) 
Var Wn = (n + 1)2 = u~. 

Therefore Wn is asymptotically normal and in fact: 

I (w-An)1 cv'nTI .. ~ 
P{wn < w) - cI> Un < (n _ 1)1/42(n-l)/4 = O( V n/2n). 

(8) 

(9) 

(10) 

In contrast, if the edges of Hn are randomly and independently oriented with prob­
ability .5, then the distribution of the number of vertices having all their adjacent 
edges oriented inward is asymptotically Poisson with mean 1. 
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A ranking of a 4 x 4 square lattice with periodic boundary conditions 
and four local minima (d = 4). 
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A ranking of a 4 x 4 square lattice. The neighbors of a vertex are all 
the points on the same row and column. There are three local minima 
(d = 6). 
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Figure 3: A ranking of H3 with two local minima (d = 3), 


