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To achieve high-rate image data compression 
while maintainig a high quality reconstructed 
image, a good image model and an efficient 
way to represent the specific data of each 
image must be introduced. Based on the 
physiological knowledge of multi - channel 
characteristics and inhibitory interactions 
between them in the human visual system, 
a mathematically coherent parallel architecture 
for image data compression which utilizes the 
Markov random field Image model and 
interactions between a vast number of filter 
banks, is proposed. 

1. Introduction 
Data compression has been one of the most important 

and active areas in information theory and computer science. 

The goal of image coding is reducing the number of bits 

in data representation as much as possible, and reconstructing 

a faithful duplicate of the original image. In order to achieve 

a high compression ratio while maintaining the high quality 
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of the reconstructed image, a good image model and an 

efficient way to represent image data must be found. Based 

on physiological knowledge of the human visual system, we 

propose a mathematically coherent parallel architecture for 

the image data compression, which utilizes a stochastic iInage 

model and interactions between a vast number of filter banks. 

2. Model based image compression and 
dynamic spatial filtering 

The process of reconstructing an original image from 

compressed data is an ill-posed problem, since an infinite 

number of original images lead to the same compressed data 

and solutions to the inverse problem can not uniquely be 

determined. The coupled Markov random field (MRF) image 

model proposed by Geman and Geman is introduced to resolve 

this ill-posedness. The mean field approximation of the MRF 

is equivalent to a recurrent type neural network with the 

Ljapunov function (see Koch. Marroquin and Yuille as a 

special case where the form of the Ljapunov function is 

predetermined). Correspondingly, a similar deterministic 

framework of image compression in which the MRF is 

replaced by the recurrent network, can be developed. 

Further, even if a good MRF model is introduced for 

a family of images, the data for each image must be known 

in order to reconstruct it. In previous studies of image data 

compression, representation of image data is fixed in each 

schema. On the other hand, in this paper, an adaptive data 

representation is proposed, tuned to each image by competion 

and cooperation of a vast number of filter banks. 

Fig. 1 shows a block diagram of the proposed 

communication system. Procedures at the encoder side are 

(1) partial partition and segmentation of the image by the 
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line process of the MRF which represents the image 

discontinuity, (2) learning of energy parameters which uses 

the line process to define the MRF model in each segmented 

area of the image, (3) adaptive data representation of images 

by cooperation and competition of a vast number of filter 

banks. (4) Information about energy value parameters, the 

types of selected filter and their outputs, and the line 

processes is transmitted, through communication channel. 

(5) Image reconstruction is carried out at the decorder site 

by stochastic relaxation based on the aquired MRF model. 

output from the selected filters, and the line process. These 

procedures are explained in detail below. 

1. The set of line processes represents discontinuities in 

the 3-dimensional world such as occluding contours or 

boundaries between different objects. It is not necessarily 

closed, but it can posess a strong tendency to do so if the 

MRF model is appropriately chosen. Based on this property, 

the image can be partially segmented into several regions. 

2. If we adopt the MRF image model, the occurrence 

probability n(w) of each configuration w is Gibbsian: 

n(w)= exp{-U(w)/T} 
Z 

Furthermore, the energy U (w) can be expressed as a summation 

of local potential Vc(w) , which depends on the configuration 

only in the clique C. 

U(w)= L Vc(w) 
CeSc 

Determination of the local energy Vc is equivalent to defining 

a specific MRF model of the image. Determination of the 

local energy is equivalent to assigning a real value VEo to 
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every possible configuration within the clique C. These energy 

parameters are estimated so that the Kullback divergence 

G between the real image distribution P and the model image 

distribution P' is minimized: 
P(w) 

G(V)=~P(w)log{p'(w. Vd} 
The following learning equation can be derived In 

approximately the same way as the learning rule of the 

Boltzmann machine (Ackley, Hinton, Sejnowski. 1985). 

Here L(C) IS the characteristic function of the specific 

configuration 'i of the clique C, that is. MC)=l if{Ys;sEC}='i 

otherwise, I;(C)=O. The first term on the right side is the 

average number of configurations in the real image. The 

second term on the right side is the average number of each 

configuration 'I generated in the MRF with the energy Vc 

when part of the image configuration is fixed to the given 

image. 

3. This procedure is based on the multi - channel 

characteristics of the human visual system. inhibitory 

interaction between X-cell and Y -cell systems. and interactions 

between columns with different orientation selectivity. etc. 

We prepare a vast number of filters centered at each site 

s in a variety of sizes. shapes and orientations. In particular) 

we use two-dimensional Gaussian filters Gs(w) to represent 

the DC components (i.e. average luminance) of the gray 

level, and use the first-order derivative of the Gaussian filters 

VGs(w) to represent the gradient of the gray levels. The filters 

whose receptive fields significantly intersect with the line 

process are inhibited. Inhibitory interactions between filters 

of similar, shape and orientation at nearby sites are introduced 
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as well as self excitation to find the N-maximum outputs 

of 'YGs, and to find the N-minimum outputs of the Laplacian 

Gaussian ~Gs. Of course, 2N must be less than the number 

of sites to attain data compression. 

4. We transmit the local potential energy, the site of the 

line process, and the outputs from the N - maximum, and 

the outputs from the N Gaussain filters which correspond 

to the N - minimum Laplacian Gaussain filters. 

5. Image reconstruction is carried out by the usual 

stochastic relaxation, that is, energy minimization with 

simulated annealing. However, because we have data 

constraints as output from the 2N selected filters, we need 

to minimize the sum of the MRF model energy and the data 

constraint energy: 

If we do not further compress the filter outputs, the 

regularization parameter is increased to infinity during 

constrained stochastic relaxation. 

3. Experimental results 
First, we ascertained that the proposed energy learning 

rule works well for various images. Here, we report only 

one example from the data compression experiments. We used 

the shown in Fig. 2a to examine the potential of our scheme. 

The image data consists of 256 pixels, each of which has 

8 bit gray levels. We used the dynamic spatial sampling 

of filter banks. Fig 2a also shows selected sample points 

in the image as black dots, as well as a few examples of 

selected filter shapes. Note that not only the density of 

the sampling points, but also the selected filter shapes are 

\ 
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appropriate local characteristics of the image. Fig. 2b shows 

the reconstructed image after 20 iterations of the relaxation 

computation. The signal to noise ratio of the reconstructed 

images was a bou t 38dB. 
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Fig. 1 Model Based Communication System 
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(a) sampled data points 
and filters 

(b) reconstructed Image 

Fig. 2 Computer simulation 
of image data compression 





PART IV: 
OPTIMIZATION AND CONTROL 


