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ABSTRACT 

One popular class of unsupervised algorithms are competitive algo­
rithms. In the traditional view of competition, only one competitor, 
the winner, adapts for any given case. I propose to view compet­
itive adaptation as attempting to fit a blend of simple probability 
generators (such as gaussians) to a set of data-points. The maxi­
mum likelihood fit of a model of this type suggests a "softer" form 
of competition, in which all competitors adapt in proportion to 
the relative probability that the input came from each competitor. 
I investigate one application of the soft competitive model, place­
ment of radial basis function centers for function interpolation, and 
show that the soft model can give better performance with little 
additional computational cost. 

1 INTRODUCTION 

Interest in unsupervised learning has increased recently due to the application of 
more sophisticated mathematical tools (Linsker, 1988; Plumbley and Fallside, 1988; 
Sanger, 1989) and the success of several elegant simulations of large scale self­
organization (Linsker, 1986; Kohonen, 1982). One popular class of unsupervised 
algorithms are competitive algorithms, which have appeared as components in a 
variety of systems (Von der Malsburg, 1973; Fukushima, 1975; Grossberg, 1978). 

Generalizing the definition of Rumelhart and Zipser (1986), a competitive adaptive 
system consists of a collection of modules which are structurally identical except, 
possibly, for random initial parameter variation. A set of rules is defined which 
allow the modules to compete in some way for the right to respond to some subset 

lThe author is visiting the University of Toronto while completing a PhD at Carnegie Mellon 
University. 
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of the inputs. Typically a module is a single unit, but this need not be the case. 
Often, parameter restrictions are used to prevent "uninteresting" representations in 
which the entire set of input patterns are represented by one module. 

Most of the work on competitive systems, especially within the neural network liter­
ature, has focused on a fairly extreme form of competition in which only the winner 
of the competition for a particular case is updated. Variants on this theme are 
the schemes in which, in addition to the winner, all of the losers are updated in 
some uniform fashion2 • Within the statistical pattern recognition literature (Duda 
and Hart, 1973; McLachlan and Basford, 1988) a rather different form of compe­
tition is frequently encountered. In this form, which will be referred to as "soft" 
competition, all competitors are updated but the amount of update is proportional 
to how well each competitor did in the competition for the current case. Under a 
statistical model, this "soft" form of competition performs exact gradient descent 
in likelihood, while the more traditional winner-take-all, or "hard" competition, is 
an approximation to gradient descent in likelihood. 

In this paper I demonstrate the superiority of "soft" competitive learning by com­
paring "hard" and "soft" algorithms in a classification application. The classifica­
tion network consists of a layer of Radial Basis Functions (RBF's) followed by a 
layer of linear units which attempt to find a least mean square (LMS) fit to the 
desired output function (Broomhead and Lowe, 1988; Lee and Kill, 1988; Niranjan 
and Fallside, 1988). A network of this type can form a smooth approximation to 
an arbitrary function, with the RBF centers serving as control points for fitting 
the function (Keeler and Kowalski, 1989; Poggio and Girosi, 1989). A competitive 
learning component adjusts the centers of the RBF's in an unsupervised fashion, 
before the weights to the output units are adapted. Comparisons of hard and soft 
algorithms for placing the RBF's on a hand-drawn digit recognition problem and 
a subset of a speaker independant vowel recognition problem suggest that the soft 
algorithm is superior. Comparisons are also made with more traditional classifiers 
on the same problems. 

2 COMPETITIVE PLACEMENT OF RBF'S 

Radial Basis Function networks have been shown to be quite effective for some tasks, 
however a major limitation is that a very large number of RBF's may be required 
in high dimensional spaces. One method for using RBF's places the centers of the 
RBF's at the interstices of some coarse lattice defined over the input space (Broom­
head and Lowe, 1988). If we assume the lattice is uniform with k divisions along 
each dimension, and the dimensionality of the input space is d, a uniform lattice 
would require kd RBF's. This exponential growth makes the use of such a uniform 
lattice impractical for any high dimensional space. Another choice is to center the 
RBF's on the first n training samples, but this method is subject to sampling error, 

2The feature maps of Kohonen (1982) are actually a special case in which a few units are 
adapted at once, however the units which are adapted in addition to the winner are selected by a 
neighbourhood function rather than by how well they represent the current data. 
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and a very large number of samples can be required to adequately represent the 
distribution of inputs. This is particularly true in high dimensional spaces where it 
is extremely difficult to visualize the input distribution and determine whether the 
training examples adequately represent this distribution. 

Moody and Darken (1988) have suggested a method in which a much smaller number 
of RBF's are used, however the centers of these RBF's are allowed to adapt to the 
input samples, so they learn to represent only the part of the input space actually 
represented by the data. The adaptive strategy also allows the center of each RBF 
to be determined by a large number of training samples, greatly reducing sampling 
error. In their method, an unsupervised algorithm (a version of k-means) is used 
to select the centers of the RBF's and some ad hoc heuristics are suggested for 
adjusting the size of the RBF's to get a smooth interpolator. The weights from the 
hidden to the output layer are adapted to minimize a Least Mean Square (LMS) 
criterion. Moody and Darken were able to attain performance levels equivalent to a 
multi-layer Back Propagation network on a chaotic time series prediction task and 
a vowel discrimination task. Significant savings in training time were also reported. 

The k-means algorithm used by Moody and Darken can be easily reformulated as a 
form of competitive adaptation. In the basic k-means algorithm (Duda and Hart, 
1973) the training samples are first assigned to the class of the closest mean. The 
means are then recomputed as the average of the samples in their class. This two 
step process is repeated until the means stop changing. This is simply the "batch" 
version of a competitive learning scheme in which the activity of each competing 
unit is proportional to the distance between its weight vector and the current input 
vector, and the winning unit on each case adapts by adding a portion of the current 
input to its weight vector (with appropriate normalization). 

We will now consider a statistical formalization of a competitive process for placing 
the centers of RBF's. Let each competing unit represent a radially symmetric 
(spherical) gaussian probability distribution, with the weight vector of the unit jIj 
representing the center or mean of the gaussian. The probability that the gaussian 
associated with unit j generated an input vector Xle is 

(~k -/I i )l 

( _ ) 1 - l ... ~ 
P Xle = -e 1 

KUj 

where K is a normalization constant, and the covariance matrix is uJ f. 

(1) 

A collection of M such units is a model of the input distribution. The parameters 
of these M gaussians can be adjusted so that the overall average likelihood of gen­
erating the training examples is maximized. The likelihood of generating a set of 
observations {Xl, X2,"" xn} from the current model is 

L = II P(lle) (2) 
Ie 

where P( lie) is the probability of generating observation lie under the current model. 
(For mathematical convenience we usually work with log L.) If gaussian i is selected 
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with probability 'lri and a sample is drawn from the selected gaussian, the probability 
of observing xJ: is 

N 

P(xJ:) = L 'lri p.(iJ:) (3) 
;=1 

where Pi(iJ:) is the probability of observing il: under gaussian distribution i. The 
summation in (3) is awkward to work with, and frequently one of the p.(iJ:) is much 
larger than any of the others. Therefore, a convenient approximation for (3) is 

(4) 

This is equivalent to assigning all of the responsibility for an observation to the 
gaussian with the highest probability of generating that observation. This approxi­
mation is frequently referred to as the "winner-take-all" assumption. It may also be 
regarded as a "hard" competitive decision among the gaussians. When we use (3) 
directly, all of the gaussians share responsibility for each observation in proportion 
to their probability of generating the observation. This sharing of responsibility can 
be regarded as a "soft" competitive decision among the gaussians. 

The maximum likelihood estimate for the mean of each gaussian in our model can 
be found by evaluating Blog L/ BPj = O. We will consider a simple model in which 
we assume that 'lrj and Uj are the same for all of the gaussians, and compare the 
hard and soft estimates for ilj. 
With the hard approximation, substituting (4) in (2), the maximum likelihood 
estimate of ilj has the simple form 

:. EJ:EC; xJ: 
I-'j = N. 

1 
(5) 

where Cj is the set of cases closest to gaussian j, and Nj is the size of this set. This 
is identical to the expression for Pj in the k-means algorithm. 

Rather than using the approximation in (4) we can find the exact maximum like­
lihood estimates for ilj by substituting (3) in (2). The estimate for the mean is 
now 

(6) 

where pOlxJ:) is the probability, given that we have observed £1:, of gaussian j 
having generated XI:. For the simple model used here 

Comparing (6) and (5), the hard competitive model uses the average of the cases 
unit j is closest to in recomputing its mean, while the soft competitive model uses 
the average of all the cases weighted by p(jlil:). 
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We can use either the approximate or exact likelihood algorithm to position the 
RBF's in an interpolation network. If X" is the current input, each RBF unit 
computes Pj(x,,) as its output activation aj. For the hard competitive model, a 
winner-take-all operation then sets aj = 1 for the most active unit and ai = 0 
for all other units. Only the winning unit will update its mean vector, and for 
this update we use the iterative version of (5). In the soft competitive model we 
normalize each aj by dividing it by the sum of aJ over all RBF's. In this case the 
mean vectors of all of the hidden units are updated according to the iterative version 
of (6). The computational cost difference between the winner-take-all operation in 
the hard model and the normalization in the soft model is negligible; however, if the 
algorithms are implemented sequentially, the soft model requires more computation 
because all of the means, rather than just the mean of the winner, are updated for 
each case. 

The two models described in this section are easily extended to allow each spher­
ical gaussian to have a different variance O'J. The activation of each RBF unit is 
now a function of (ik - j1J)/O'j, but the expressions for the maximum likelihood 
estimates of iIj are the same. Expressions for updating O'J can be found by solv­
ing 810gL/8O'J = O. Some simulations have also been performed with a network 
in which each RBF had a diagonal covariance matrix, and each of the d variance 
components was estimated separately (Nowlan, 1990). 

3 APPLICATION TO TWO CLASSIFICATION TASKS 

The architecture described above was used for a digit classification and a vowel 
discrimination task. The networks were trained by first using the soft or hard 
competitive algorithm to determine the means and variances of the RBF's, and, 
once these were learned, then training the output layer of weights. The weights 
from the RBF's to the output layer were trained using a recursive least squares 
algorithm, allowing an exact LMS solution to be found with one pass through the 
training set. (A target of +1 was used for the correct output category and -1 
for all of the other categories.) For the hard competitive model the unnormalized 
probabilities Pj (x) were used as the RBF unit outputs, while the soft competitive 
model used the normalized probabilities pUli). 

The first task required the classification of a set of hand drawn digits from 12 
subjects. There were 480 input patterns, divided into 320 training patterns and 
160 testing patterns, with examples from all subjects in both groups. Each pattern 
was digitized on a 16 by 16 grid. These 256 dimensional binary vectors were used 
as input to the classification network, and there were 10 output units. 

Networks with 40 and 150 spherical gaussians were simulated. Both hard and soft 
algorithms were used with all configurations. The performance of these networks 
on the testing set is summarized in Table 1. This table also contains performance 
results for a multi-layer back propagation network, a two layer linear network, and 
a nearest neighbour classifier on the same task. The nearest neighbour classifier 
used all 320 labeled training samples and based its decision on the class of the 
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Type of Classifier % Correct on Test Set 
40 Sph. Gauss. - Hard 87.6% 
40 Sph. Gauss. - Soft 91.8% 
150 Sph. Gauss. - Hard 90.1% 
150 Sph. Gauss. - Soft 94.0% 
Layered BP Net 94.5% 
Linear Net 60.0% 
Nearest Neighbour 83.1% 

Table 1: Summary of Performance for Digit Classification 

nearest neighbour only3. The relatively poor performance of the nearest neighbour 
classifier is one indication of the difficulty of this task. The two layer linear network 
was trained with a recursive least squares algorithm4. The back propagation net­
work was developed specifically for this task (Ie Cun, 1987), and used a specialized 
architecture with three layers of hidden units, localized receptive fields, and weight 
sharing to reduce the number of free parameters in the system. 

Table 1 reveals that the networks were trained using the soft competitive algorithm 
to determine means and variances of the RBF's were superior in performance to 
identical networks trained with the hard competitive algorithm. The RBF network 
using 150 spherical gaussians was able to equal the performance level of the sophisti­
cated back propagation network, and a network with 40 spherical RBF's performed 
considerably better than the nearest neighbour classifier. 

The second task was a speaker independent vowel recognition task. The data con­
sisted of a digitized version of the first and second formant frequencies of 10 vowels 
for multiple male and female speakers (Peterson and Barney, 1952). Moody and 
Darken (1988) have previously applied to this data an architecture which is very 
similar to the one suggested here, and Huang and Lippmann (1988) have compared 
the performance of a number of different classifiers on this same data. More re­
cently, Bridle (1989) has applied a supervised algorithm which uses a "softmax" 
output function to this data. This softmax function is very similar to the equa­
tion for P(j\Zk) used in the soft competitive model. The results from these studies 
are included in Table 2 along with the results for RBF networks using both hard 
and soft competition to determine the RBF parameters. All of the classifiers were 
trained on a set of 338 examples and tested on a separate set of 333 examples. 

As with the digit classification task, the RBF networks trained using the soft adap­
tive procedure show uniformly better performance than equivalent networks trained 
using the hard adaptive procedure. The results obtained for the hard adaptive pro-

3Two, three, and five nearest neighbour classifiers were also tried, but they all perfonned worse 
than nearest neighbour. 

fThis network was included to show that the linear layer is not doing all of the work in the 
hybrid RBF networks. 
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Type of Classifier % Correct on Test Set 
20 Sph. Gauss. - Hard 75.1% 
20 Sph. Gauss. - Soft 82.6% 
100 Sph. Gauss. - Hard 82.6% 
100 Sph. Gauss. - Soft 87.1% 
20 RBF's (Moody et al) 73.3% 
100 RBF's (Moody et al) 82.0% 
K Nearest Neighbours (Lippmann et al) 82.0% 
Gaussian Classifier (Lippmann et al) 79.7% 
2 Layer BP Net (Lippmann et al) 80.2% 
Feature Map (Lippmann et al) 77.2% 
2 Layer Softmax (Bridle) 78.0% 

Table 2: Summary of Performance for Vowel Classification 

cedure with 20 and 100 spherical gaussians are very close to Moody and Darken's 
results, which is expected since the procedures are identical except for the manner 
in which the variances are obtained. Table 2 also reveals that the RBF network 
with 100 spherical gaussians, trained with the soft adaptive procedure, performed 
better than any of the other classifiers that have been applied to this data. 

4 DISCUSSION 

The simulations reported in the previous section provide strong evidence that the 
exact maximum likelihood (or soft) approach to determining the centers and sizes of 
RBF's leads to better classification performance than the winner-take-all approx­
imation. In both tasks, for a variety of numbers of RBF's, the exact maximum 
likelihood approach outperformed the approximate method. Comparing (5) and 
(6) reveals that this improved performance can be obtained with little additional 
computational burden. 

The performance of the RBF networks on these two classification tasks also shows 
that hybrid approaches which combine unsupervised and supervised procedures are 
capable of competent levels of performance on difficult problems. In the digit clas­
sification task the hybrid RBF network was able to equal the performance level of 
a sophisticated multi-layer supervised network, while in the vowel recognition task 
the hybrid network obtained the best performance level of any of the classification 
networks. One reason why the hybrid model is interesting is that since the hid­
den unit representation is independent of the classification task, it may be used 
for many different tasks without interference between the tasks. (This is actually 
demonstrated in the simulations described, since each category in the two tasks can 
be regarded as a separate classification problem.) Even if we are only interested in 
using the network for one task, there are still advantages to the hybrid approach. 
In many domains, such as speech, unlabeled samples can be obtained much more 
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cheaply than labeled samples. To avoid over-fitting, the amount of training data 
must generally be considerably greater than the number of free parameters in the 
model. In the hybrid models, especially in high dimensional input spaces, most of 
the parameters are in the unsupervised part of the modelS. The unsupervised stage 
may be trained with a large body of unlabeled samples, and a much smaller body 
of labeled samples can be used to train the output layer. 

The performance on the digit classification task also shows that RBF networks can 
deal effectively with tasks with high (256) dimensional input spaces and highly 
non-gaussian input distributions. The competitive network was able to succeed on 
this task with a relatively small number of RBF's because the data was actually 
distributed over a much lower dimensional subspace of the input space. The soft 
competitive network automatically concentrates its representation on this subspace, 
and in this fashion performs a type of implicit dimensionality reduction. Moody 
(1989) has also mentioned this type of dimensionality reduction as a factor in the 
success of some of the models he has worked with. 

The success of the soft adaptive strategy in these interpolation networks encourages 
one to extend the soft interpretation in other directions. The feature maps of 
Kohonen (1982) incorporate a hard competitive process, and a soft version of the 
feature map algorithm could be developed. In addition, there is a class of decision­
directed, or "bootstrap" , learning algorithms which use their own outputs to provide 
a training signal. These algorithms can be regarded as hard competitive processes, 
and new algorithms which use the soft assumption may be developed from the 
bootstrap procedure (Nowlan and Hinton, 1989). Bridle (1989) has suggested a 
different type of output unit for supervised networks, which incorporates the idea 
of a "soft max" type of competition. Finally, the maximum likelihood approach is 
easily extended to non-gaussian models, and one model of particular interest would 
be the Boltzmann machine. 
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