
282 Kanerva

Contour-Map Encoding of Shape for Early Vision

Pentti Kanerva
Research Institute for Advanced Computer Science

Mail Stop 230-5, NASA Ames Research Center
Moffett Field, California 94035

ABSTRACT

Contour maps provide a general method for
recognizing two-dimensional shapes. All but
blank images give rise to such maps, and people
are good at recognizing objects and shapes
from them. The maps are encoded easily in
long feature vectors that are suitable for
recognition by an associative memory. These
properties of contour maps suggest a role for
them in early visual perception. The prevalence
of direction-sensitive neurons in the visual
cortex of mammals supports this view.

INTRODUCTION

Early vision refers here to the first stages of visual
perception of an experienced (adult human) observer.
Overall, visual perception results in the identification of
what is being viewed: We recognize an image as the letter A
because it looks to us like other As we have seen. Early
vision is the beginning of this process of identification-­
the making of the first guess.

Early vision cannot be based on special or salient
features. For example, we normally think of the letter A
as being composed of two slanted strokes, / and \, meeting
at the top and connected in the middle by a horizontal
stroke, -. The strokes and their coincidences define all
the features of A. However, we recognize the As in Figure 1
even though the strokes and the features, if present at all,
do not stand out in the images.

Contour-Map Encoding of Shape for Early Vision 283

Most telling about human vision is that we can recognize
such As after seeing more or less normal As only. The
challenge of early vision, then, is to find general encoding
mechanisms that turn these quite dissimilar images of the
same object into similar internal representations while
leaving the representations of different objects dissimilar;
and to find basic pattern-recognition mechanisms that work
with these representations. Since our main work is on
associative memories, we have been interested in ways to
encode images into long feature vectors suitable for such
memories. The contour-map method of this paper encodes a
variety of images into vectors for associative memories.

REPRESENTING AN IMAGE AS A CONTOUR MAP

Images take many forms: line drawings, silhouettes,
outlines, dot-matrix pictures, gray-scale pictures, color
pictures, and the like, and pictures that combine all these
elements. Common to all is that they occupy a region of
(two-dimensional) space. An early representation of an
image should therefore be concerned with how the image
controls its space or, in technical terms, how might it be
represented as a field.

Let us consider first a gray-scale image. It defines
a field by how dark it is in different places (image
intensity--a scalar field--the image itself is the field).
A related field is given by how the darkness changes from
place to place (gradient of intensity--a vector field) .
Neither one is quite right for recognizing As because
reversing the field (turning dark to light and light to
dark) leaves us with the "same" A. However, the dark­
and-light reversal leaves the contour lines of the image
unchanged (i.e., lines of uniform intensity--technically
a tangent field perpendicular to the gradient field). My
proposal is to base initial recognition on the contour
lines.

In line drawings and black-and-white images, which have
only two darkness levels or "colors", the contour lines are
not well defined. This is overcome by propagating the lines
and the edges of the image outward and inward over areas of

FIGURE 1. Various kinds of As.

: '. : :: :::: : : :: ::: :: ::•.•.•.•.......
:: ::: ::=:: :: :::; ::::
to' • •••• •• , •••••••••
:; ;:::::: ::;; :::;:: :
: ;:::!:~:::!~~::::::•..
:; ~: : : : ~ :: : : : : : : ::;;

284]{anerva

uniform image intensity, in the manner of contour lines,
roughly parallel to the lines and the edges. Figure 2 shows
only a few such lines, but, in fact, the image is covered
with them, running roughly parallel to each other. As a
rule, exactly one contour line runs through any given point.
Computing its direction is discussed near the end of the
paper.

ENCODING THE CONTOUR MAP

Table 1 shows how the direction of the contour at a point
can be encoded in three trits (-1, 0, 1 ternary variables) .
The code divides 180 degrees into six equal sectors and
assigns a codeword to each sector. The distance between
two codewords is the number of (Hamming) units by which
the words differ (L1 distance). The code is circular, and
the distance between codewords is related directly to the
difference in direction: Directions 30, 60, and 90 degrees
apart are encoded with words that are 2, 4, and 6 units
apart, respectively. The code wraps around, as do tangents,
so that directions 180 degrees apart are encoded the same.
For finer discrimination we would use some finer circular
code. The zero-word 000, which is equally far from all
other words in the code, is used for points at which the
direction of the contour is ill-defined, such as the very
centers of circles.

This encoding makes the direction of the contour at any
point on a map into a three-component vector. To encode
the entire map, the vector field is sampled at a fixed,
finite set of points, and the encodings of the sample points
are concatenated in fixed order into a long vector. In
preliminary studies we have used small sample sizes: 7 x 5
(= 35) sample points, each encoded into three trits, for a
total vector of (3 x 35 =) 105 trits, and 8 x 8 sample
points by three trits for a total vector of 192 trits.

FIGURE 2. Propagating the contour.

Contour-Map Encoding of Shape for Early Vision 285

For an example, Figure 3 shows the digit 4 drawn on a
21-by-15-pixel grid. It also shows a 7 x 5 sampling grid
laid over the image and the direction of the contour at
the sample points (shown by short line segments). Below
the image are the three-trit encodings of the sample points
starting at the upper left corner and progressing by rows,
concatenated into a 105-trit encoding of the entire image.
In this encoding, + means +1 and - means -1.

From Positions of the Code to Directional Sensors

Each position of the three-trit code can be thought of as a
directional sensor. For example, the center position senses
contours at 90 degrees, plus or minus 45 degrees: It is 1
when the direction of the contour is closer to vertical than
to horizontal (see Table 1). Similarly, each position of
the long (105-trit) code for the entire map can be thought
of as a sensor for a specific direction--plus or minus--at
a specific location on the map.

An array of sensors will thus encode an image. The
sensors are like the direction-sensitive cells of the visual
cortex. Such cells, of course, are not laid down with
perfect regularity over the cortex, but that does not mean

I I I \

TABLE 1 ~~ f
Coarse Circular Code for f

Direction of Contour Ii! f ~I •
~~===================== [fl
Direction, Codeword ,~ .

f. ~.,.~ }:< "', --. degrees
----------------------- f f -- --0 + 15 1 -1 1

30 + 15 -1 -1 1 \ \ I
60 + 15 -1 1 1

90 + 15 -1 1 -1 -++ -++ -++ --+ ++-
120 + 15 1 1 -1 -++ -++ -++ -+- -+-
150 + 15 1 -1 -1 --+ --+ --+ -+- -+-

--+ -++ 000 -+- -+-
180 + 15 1 -1 1 000 +-+ +-+ +-+ --+

. +-- +-+ +-+ -+- -+-
Undefined 0 0 0 +-- +-- ++- ++- -++

=======================

FIGURE 3. Encoding an image.

286 Kanerva

that they could not perform as encoders. Accordingly, a
direction-sensitive cell can be thought of as a feature
detector that encodes for a certain direction at a certain
location in the visual or attentional field. An irregular
array of randomly oriented sensors laid over images would
produce perfectly good encodings of their contour maps.

COMPARING TWO CONTOUR MAPS

How closely do two contour maps resemble each other? For
simplicity, we will compare maps of equal size (and shape)
only. The maps are compared point to point. The difference
at a point is the difference in the direction of the contour
at that point on the two maps--that is, the magnitude of the
lesser of the two angles made by the two contour lines that
run through the two points that correspond to each other
on the two maps. The maximum difference at a point is
therefore 90 degrees. The entire maps are then compared
by adding the pointwise differences over all the points (by
integrating over the area of the map).

The purpose of the encoding is to make the comparing of
maps simple. The code is so constructed that the difference
of two maps at a point is roughly proportional to the
distance between the two (3-trit) codewords--one from each
map--for that point. We need not even concern ourselves
with the finding of the lesser of the two angles made by the
crossing of the two contours; the distance between codewords
accounts for that automatically.

Entire maps are then compared by adding together the
distances at the (35) sample points. This is equivalent
to computing the distance between the (105-trit) codewords
for the two maps. This distance is proportional to the
difference between the maps, and it is approximately so
because the maps are sampled at a small number of points
and because the direction at each point is coded coarsely.

COMPUTING THE DIRECTION OF THE CONTOUR

We have not explored widely how to compute contours from
images and merely outline here one method, not exactly
biological, that works for line drawings and two-tone images
and that can be generalized to gray-scale images and even
to many multicolor images. We have also experimented with
oriented, difference-of-Gaussian filters of Parent and
Zucker (1985) and with cortex transforms of Watson (1987).

The contours are based on a simple model of attraction,
akin to gravity, by assuming that the lines and the edges
of the image attract according to their distance from the
point. The net attraction at any point on the image defines

Contour-Map Encoding of Shape for Early Vision 287

a gradient field, and the contours are perpendicular to it.
In practice we work with pixels and assume, for the sake

of the gravity model, that pixels of the same color--same as
that of the sample point P for which we are computing the
direction--have mass zero and those of the opposite color
have mass one. For the direction to be independent of
scale, the attractive force must be inversely proportional
to some power of the distance. Powers greater than 2 make
the computation local. For example, power 7 means that one
pixel, twice as far as another, contributes only 1/128 as
much as the other to the net force. To make the attraction
somewhat insensitive to noise, a small constant, 3, is added
to the distance. (The values 7 and 3 were chosed after a
small amount of experimentation.) Hence, pixel X (of mass
1) attracts P with a magnitude

-7
[d(P,X) + 3]

force in the direction of X, where d(P,X) is the (Euclidean)
distance between P and X. The vector sum of the forces
over all pixels X (of mass 1) then is the attractive
force at point P, and the direction of the contour at P is
perpendicular to it. The magnitude of the vector surn is
scaled by dividing it with the sum of the magnitudes of its
components. This scaled magnitude indicates how well the
direction is defined in the image.

When this computation is made at a point on a (one-pixel
wide) line, the result is a zero-vector (the gradient at
the top of a ridge is zero). However, we want to use the
direction of the line itself as the direction of the
contour. To this end, we compute at each sample point P
another vector that detects linear features, such as lines.
This computation is based on the above attraction model,
modified as follows: Pixels of the same color as P's now
have mass one and those of the opposite color have mass zero
(the pixel at P being always regarded as having mass zero);
and the direction of the force, instead of being the angle
from P to X, is twice that angle. The doubling of the angle
makes attractive forces in opposite directions (along a
line) reenforce each other and in perpendicular directions
cancel out each other. The angle of the net force is then
halved, and the magnitude of the force is scaled as above.

The two computations yield two vectors, both representing
the direction of the contour at a point. They can be
combined into a single vector by doubling their angles,
to eliminate lBO-degree ambiguities, by adding together
the resulting vectors, and by halving the angle of the sum.
The direction of the result gives the direction of the
contour, and the magnitude of the result indicates how well

288 Kanerva

this direction is defined. If the magnitude is below some
threshold, the direction is taken to be undefined and is
encoded with 000.

SOME COMPARISONS

The method is very general, which is at once its virtue and
limitation. The virtue is that it works where more specific
methods fail, the limitation that the specific methods are
needed for specific problems.

In our preliminary experiments with handwritten Zip-code
digits, low-pass filtering (blurring) an image, as a method
of encoding it, and contour maps resulted in similar rates
of recognition by a sparse distributed memory. Higher rates
on this same task were gotten by Denker et al. (1989) by
encoding the image in terms of features specific to
handwriting.

To get an idea of the generality of contour maps, Figure
4 shows encoded maps of ten normal digits like that in
Figure 3, and for three unusual digits barely recognizable
by humans. The labels for the unusual ones and for their
maps, 8a, 8b, and 9a, tell what digits they were intented
to be. Table 2 of distances between the encoded maps
shows that 8 gives only the second best match to 8a and 8b,
whereas the digit closest to 9a indeed is 9. This suggest
that a system trained on normal letters and digits would do

1 r
8a 8b

a

a

6

9a

a

8a 8b 9a

• • •
/./

FIGURE 4. Contour maps of digits. Unusual text.

Contour-Map Encoding of Shape for Early Vision 289

TABLE 2
Distances Between Normal and Unusual Digits of Figure 4

8a
8b
9a

o

62
38
70

1 2 3 4

95 80 74 91
71 88 64 77
89 66 90 109

5 6 7

87 83 86
73 65 88
99 103 62

8 9

67 79
51 73
83 59

-===

a fair job at recognizing the 'NIPS 1989' at the bottom of
Figure 4. Systems that encode characters as bit maps, or
that take them as composed of strokes, likewise trained,
would not do nearly as well. Going back to the As of Figure
1, they can, with one exception, be recognized based on the
map of a normal A. Logograms are a rich source of images of
this kind. They are excellent for testing a vision system
for generality. Finally, other oriented fields, not just
contour maps, can be encoded with methods similar to this
for recognition by an associative memory.

Acknowledgements

This research was supported by the National Aeronautics and
Space Administration (NASA) with cooperative agreement No.
NCC2-387 with the Universities Space Research Association.
The idea of contour maps was inspired by the gridfonts of
Douglas Hofstadter (1985). The first experiments with the
contour-map method were done by Bruno Olshausen. The
gravity model arose from discussions with Lauri Kanerva.
David Rogers made the computer-drawn illustrations.

References

Denker, J.S., Gardner, W.R., Graf, H.P., Henderson, D.,
Howard, R.E., Hubbard, W., Jackel, L.D., Baird, H.S., and
Guyon, I. (1989) Neural Network Recognizer for Hand­
Written Zip Code Digits. In D.S. Touretzky (ed.),
Advances in Neural Information Systems, Volume I.
San Mateo, California: Kaufmann. 323-331.

Hofstadter, D.R. (1985) Metamagical Themas. New Your:
Basic Books.

Parent, P., and Zucker, S.W. (1985) Trace Inference,
Curvature Consistency, and Curve Detection. Report CIM-
86-3, McGill Research Center for Intelligent Machines,
Montreal, Canada.

Watson, A.W. (1987) The Cortex Transform: Rapid
Computation of Simulated Neural Images. Computer Vision,
Graphics, and Image Processing 39(3) :311-327.

