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ABSTRACT 

Contour maps provide a general method for 
recognizing two-dimensional shapes. All but 
blank images give rise to such maps, and people 
are good at recognizing objects and shapes 
from them. The maps are encoded easily in 
long feature vectors that are suitable for 
recognition by an associative memory. These 
properties of contour maps suggest a role for 
them in early visual perception. The prevalence 
of direction-sensitive neurons in the visual 
cortex of mammals supports this view. 

INTRODUCTION 

Early vision refers here to the first stages of visual 
perception of an experienced (adult human) observer. 
Overall, visual perception results in the identification of 
what is being viewed: We recognize an image as the letter A 
because it looks to us like other As we have seen. Early 
vision is the beginning of this process of identification-­
the making of the first guess. 

Early vision cannot be based on special or salient 
features. For example, we normally think of the letter A 
as being composed of two slanted strokes, / and \, meeting 
at the top and connected in the middle by a horizontal 
stroke, -. The strokes and their coincidences define all 
the features of A. However, we recognize the As in Figure 1 
even though the strokes and the features, if present at all, 
do not stand out in the images. 
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Most telling about human vision is that we can recognize 
such As after seeing more or less normal As only. The 
challenge of early vision, then, is to find general encoding 
mechanisms that turn these quite dissimilar images of the 
same object into similar internal representations while 
leaving the representations of different objects dissimilar; 
and to find basic pattern-recognition mechanisms that work 
with these representations. Since our main work is on 
associative memories, we have been interested in ways to 
encode images into long feature vectors suitable for such 
memories. The contour-map method of this paper encodes a 
variety of images into vectors for associative memories. 

REPRESENTING AN IMAGE AS A CONTOUR MAP 

Images take many forms: line drawings, silhouettes, 
outlines, dot-matrix pictures, gray-scale pictures, color 
pictures, and the like, and pictures that combine all these 
elements. Common to all is that they occupy a region of 
(two-dimensional) space. An early representation of an 
image should therefore be concerned with how the image 
controls its space or, in technical terms, how might it be 
represented as a field. 

Let us consider first a gray-scale image. It defines 
a field by how dark it is in different places (image 
intensity--a scalar field--the image itself is the field). 
A related field is given by how the darkness changes from 
place to place (gradient of intensity--a vector field) . 
Neither one is quite right for recognizing As because 
reversing the field (turning dark to light and light to 
dark) leaves us with the "same" A. However, the dark­
and-light reversal leaves the contour lines of the image 
unchanged (i.e., lines of uniform intensity--technically 
a tangent field perpendicular to the gradient field). My 
proposal is to base initial recognition on the contour 
lines. 

In line drawings and black-and-white images, which have 
only two darkness levels or "colors", the contour lines are 
not well defined. This is overcome by propagating the lines 
and the edges of the image outward and inward over areas of 

FIGURE 1. Various kinds of As. 
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uniform image intensity, in the manner of contour lines, 
roughly parallel to the lines and the edges. Figure 2 shows 
only a few such lines, but, in fact, the image is covered 
with them, running roughly parallel to each other. As a 
rule, exactly one contour line runs through any given point. 
Computing its direction is discussed near the end of the 
paper. 

ENCODING THE CONTOUR MAP 

Table 1 shows how the direction of the contour at a point 
can be encoded in three trits (-1, 0, 1 ternary variables) . 
The code divides 180 degrees into six equal sectors and 
assigns a codeword to each sector. The distance between 
two codewords is the number of (Hamming) units by which 
the words differ (L1 distance). The code is circular, and 
the distance between codewords is related directly to the 
difference in direction: Directions 30, 60, and 90 degrees 
apart are encoded with words that are 2, 4, and 6 units 
apart, respectively. The code wraps around, as do tangents, 
so that directions 180 degrees apart are encoded the same. 
For finer discrimination we would use some finer circular 
code. The zero-word 000, which is equally far from all 
other words in the code, is used for points at which the 
direction of the contour is ill-defined, such as the very 
centers of circles. 

This encoding makes the direction of the contour at any 
point on a map into a three-component vector. To encode 
the entire map, the vector field is sampled at a fixed, 
finite set of points, and the encodings of the sample points 
are concatenated in fixed order into a long vector. In 
preliminary studies we have used small sample sizes: 7 x 5 
(= 35) sample points, each encoded into three trits, for a 
total vector of (3 x 35 =) 105 trits, and 8 x 8 sample 
points by three trits for a total vector of 192 trits. 

FIGURE 2. Propagating the contour. 
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For an example, Figure 3 shows the digit 4 drawn on a 
21-by-15-pixel grid. It also shows a 7 x 5 sampling grid 
laid over the image and the direction of the contour at 
the sample points (shown by short line segments). Below 
the image are the three-trit encodings of the sample points 
starting at the upper left corner and progressing by rows, 
concatenated into a 105-trit encoding of the entire image. 
In this encoding, + means +1 and - means -1. 

From Positions of the Code to Directional Sensors 

Each position of the three-trit code can be thought of as a 
directional sensor. For example, the center position senses 
contours at 90 degrees, plus or minus 45 degrees: It is 1 
when the direction of the contour is closer to vertical than 
to horizontal (see Table 1). Similarly, each position of 
the long (105-trit) code for the entire map can be thought 
of as a sensor for a specific direction--plus or minus--at 
a specific location on the map. 

An array of sensors will thus encode an image. The 
sensors are like the direction-sensitive cells of the visual 
cortex. Such cells, of course, are not laid down with 
perfect regularity over the cortex, but that does not mean 
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TABLE 1 ~~ f 
Coarse Circular Code for f 

Direction of Contour Ii! f ~I • 
~~===================== [fl 
Direction, Codeword ,~ . 

f. ~.,.~ }:< "', --. degrees 
----------------------- ....... f f -- --0 + 15 1 -1 1 

30 + 15 -1 -1 1 ....... ....... \ \ I 
60 + 15 -1 1 1 

90 + 15 -1 1 -1 -++ -++ -++ --+ ++-
120 + 15 1 1 -1 -++ -++ -++ -+- -+-
150 + 15 1 -1 -1 --+ --+ --+ -+- -+-

--+ -++ 000 -+- -+-
180 + 15 1 -1 1 000 +-+ +-+ +-+ --+ 

. . . . . . +-- +-+ +-+ -+- -+-
Undefined 0 0 0 +-- +-- ++- ++- -++ 

======================= 

FIGURE 3. Encoding an image. 
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that they could not perform as encoders. Accordingly, a 
direction-sensitive cell can be thought of as a feature 
detector that encodes for a certain direction at a certain 
location in the visual or attentional field. An irregular 
array of randomly oriented sensors laid over images would 
produce perfectly good encodings of their contour maps. 

COMPARING TWO CONTOUR MAPS 

How closely do two contour maps resemble each other? For 
simplicity, we will compare maps of equal size (and shape) 
only. The maps are compared point to point. The difference 
at a point is the difference in the direction of the contour 
at that point on the two maps--that is, the magnitude of the 
lesser of the two angles made by the two contour lines that 
run through the two points that correspond to each other 
on the two maps. The maximum difference at a point is 
therefore 90 degrees. The entire maps are then compared 
by adding the pointwise differences over all the points (by 
integrating over the area of the map). 

The purpose of the encoding is to make the comparing of 
maps simple. The code is so constructed that the difference 
of two maps at a point is roughly proportional to the 
distance between the two (3-trit) codewords--one from each 
map--for that point. We need not even concern ourselves 
with the finding of the lesser of the two angles made by the 
crossing of the two contours; the distance between codewords 
accounts for that automatically. 

Entire maps are then compared by adding together the 
distances at the (35) sample points. This is equivalent 
to computing the distance between the (105-trit) codewords 
for the two maps. This distance is proportional to the 
difference between the maps, and it is approximately so 
because the maps are sampled at a small number of points 
and because the direction at each point is coded coarsely. 

COMPUTING THE DIRECTION OF THE CONTOUR 

We have not explored widely how to compute contours from 
images and merely outline here one method, not exactly 
biological, that works for line drawings and two-tone images 
and that can be generalized to gray-scale images and even 
to many multicolor images. We have also experimented with 
oriented, difference-of-Gaussian filters of Parent and 
Zucker (1985) and with cortex transforms of Watson (1987). 

The contours are based on a simple model of attraction, 
akin to gravity, by assuming that the lines and the edges 
of the image attract according to their distance from the 
point. The net attraction at any point on the image defines 
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a gradient field, and the contours are perpendicular to it. 
In practice we work with pixels and assume, for the sake 

of the gravity model, that pixels of the same color--same as 
that of the sample point P for which we are computing the 
direction--have mass zero and those of the opposite color 
have mass one. For the direction to be independent of 
scale, the attractive force must be inversely proportional 
to some power of the distance. Powers greater than 2 make 
the computation local. For example, power 7 means that one 
pixel, twice as far as another, contributes only 1/128 as 
much as the other to the net force. To make the attraction 
somewhat insensitive to noise, a small constant, 3, is added 
to the distance. (The values 7 and 3 were chosed after a 
small amount of experimentation.) Hence, pixel X (of mass 
1) attracts P with a magnitude 

-7 
[d(P,X) + 3] 

force in the direction of X, where d(P,X) is the (Euclidean) 
distance between P and X. The vector sum of the forces 
over all pixels X (of mass 1) then is the attractive 
force at point P, and the direction of the contour at P is 
perpendicular to it. The magnitude of the vector surn is 
scaled by dividing it with the sum of the magnitudes of its 
components. This scaled magnitude indicates how well the 
direction is defined in the image. 

When this computation is made at a point on a (one-pixel 
wide) line, the result is a zero-vector (the gradient at 
the top of a ridge is zero). However, we want to use the 
direction of the line itself as the direction of the 
contour. To this end, we compute at each sample point P 
another vector that detects linear features, such as lines. 
This computation is based on the above attraction model, 
modified as follows: Pixels of the same color as P's now 
have mass one and those of the opposite color have mass zero 
(the pixel at P being always regarded as having mass zero); 
and the direction of the force, instead of being the angle 
from P to X, is twice that angle. The doubling of the angle 
makes attractive forces in opposite directions (along a 
line) reenforce each other and in perpendicular directions 
cancel out each other. The angle of the net force is then 
halved, and the magnitude of the force is scaled as above. 

The two computations yield two vectors, both representing 
the direction of the contour at a point. They can be 
combined into a single vector by doubling their angles, 
to eliminate lBO-degree ambiguities, by adding together 
the resulting vectors, and by halving the angle of the sum. 
The direction of the result gives the direction of the 
contour, and the magnitude of the result indicates how well 
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this direction is defined. If the magnitude is below some 
threshold, the direction is taken to be undefined and is 
encoded with 000. 

SOME COMPARISONS 

The method is very general, which is at once its virtue and 
limitation. The virtue is that it works where more specific 
methods fail, the limitation that the specific methods are 
needed for specific problems. 

In our preliminary experiments with handwritten Zip-code 
digits, low-pass filtering (blurring) an image, as a method 
of encoding it, and contour maps resulted in similar rates 
of recognition by a sparse distributed memory. Higher rates 
on this same task were gotten by Denker et al. (1989) by 
encoding the image in terms of features specific to 
handwriting. 

To get an idea of the generality of contour maps, Figure 
4 shows encoded maps of ten normal digits like that in 
Figure 3, and for three unusual digits barely recognizable 
by humans. The labels for the unusual ones and for their 
maps, 8a, 8b, and 9a, tell what digits they were intented 
to be. Table 2 of distances between the encoded maps 
shows that 8 gives only the second best match to 8a and 8b, 
whereas the digit closest to 9a indeed is 9. This suggest 
that a system trained on normal letters and digits would do 
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FIGURE 4. Contour maps of digits. Unusual text. 
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TABLE 2 
Distances Between Normal and Unusual Digits of Figure 4 

8a 
8b 
9a 

o 

62 
38 
70 

1 2 3 4 

95 80 74 91 
71 88 64 77 
89 66 90 109 

5 6 7 

87 83 86 
73 65 88 
99 103 62 

8 9 

67 79 
51 73 
83 59 

-============================================= 

a fair job at recognizing the 'NIPS 1989' at the bottom of 
Figure 4. Systems that encode characters as bit maps, or 
that take them as composed of strokes, likewise trained, 
would not do nearly as well. Going back to the As of Figure 
1, they can, with one exception, be recognized based on the 
map of a normal A. Logograms are a rich source of images of 
this kind. They are excellent for testing a vision system 
for generality. Finally, other oriented fields, not just 
contour maps, can be encoded with methods similar to this 
for recognition by an associative memory. 
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