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Subgrouping Reduces Complexity and Speeds Up 
Learning in Recurrent Networks 

1 INTRODUCTION 

David Zipser 
Department of Cognitive Science 

University of California, San Diego 
La Jolla, CA 92093 

Recurrent nets are more powerful than feedforward nets because they allow simulation of 
dynamical systems. Everything from sine wave generators through computers to the brain are 
potential candidates, but to use recurrent nets to emulate dynamical systems we need learning 
algorithms to program them. Here I describe a new twist on an old algorithm for recurrent nets 
and compare it to its predecessors. 

2 BPTT 

In the beginning there was BACKPROPAGATION THROUGH TUvffi (BPTT) which was 
described by Rumelhart, Williams, and Hinton (1986). The idea is to add a copy of the whole 
recurrent net to the top of a growing feedforward network on each update cycle. Backpropa­
gating through this stack corrects for past mistakes by adding up all the weight changes from 
past times. A difficulty with this method is that the feedforward net gets very big. The obvious 
solution is to truncate it at a fixed number of copies by killing an old copy every time a new 
copy is added. The truncated-BPTT algorithm is illustrated in Figure 1. It works well, more 
about this later. 

3RTRL 

It turns out that it is not necessary to keep an ever growing stack of copies of the recurrent 
net as BPTT does. A fixed number of parameters can record all of past time. This is done in 
the REAL TI!\.1E RECURRENT LEARNING (RTRL) algorithm of Williams and Zipser 
(1989). The derivation is given elsewhere (Rumelhart, Hinton, & Williams, 1986), but a 
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Figure 1: BPTT. 
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simple rational comes from the fact that error backpropagation is linear, which makes it 
possible to collapse the whole feedforward stack ofBPTT into a few fixed size data structures. 
The biggest and most time consuming to update of these is the matrix of p values whose 
update rule is 

P it <t + 1) = f '(Sk <t» [ L Wkl P i~ <t) + c5 ik Zj <t) ] 
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where z,,(t) represents the value of a signal, either an input or recurrent; the sets of subscriptss 
are defined so that if z" is an input then k E I and if z"is a signal from a recurrently connected 
unit then k E U, s" are net values; d,,, is the Kronecker delta; and w k.l is the recurrent weight 
matrix. For a network with n units and w weights there are nw of these p values, and it takes 
O(wn2) operations to update them. As n gets big this gets very big and is computationally un­
pleasant. This unpleasantness is cured to some degree by the new variant ofRTRL described 
below. 

4 SUBGROUPED RTRL 

The value of n in the factor wn2, which causes all the trouble for RTRL, can be reduced by 
viewing a recurrent network as consisting of a set of subnetworks all connected together. A 
full y recurrent network wi th n units and m inpu ts can be divided into g full y recurren t su bnets, 
each with n/g units (assuming g is a factor of n). Each unit in a subnet will receive as input 
the original m inputs and the activities of the n - n/ g units in the other subnets. The effect of 
subgrouping is to reduce the number of p values per weight to n/g and the number of 
operations to update the pto O(wn2/g2). If g is increased in proportion to n, which keeps the 
size of the sub-nets constant, n2/g2 is a constant and the complexity is reduced to O(w). If all 
this is confusing try Figure 2. 

5 TESTING THESE ALGORITHMS 

To see if the subgrouped algorithm works, I compared its performance to RTRL and BPTT 
on the problem of training a Turing machine to balance parentheses. The network "sees" the 
same tape as the Turing machine, and is trained to produce the same outputs. A fully recurrent 
network with 12 units was the smallest that learned this task. All three algorithms learned the 
task in about the same number oflearning cycles. RTRL and subgrouped RTRL succeeded 
50%, and BPTT succeeded 80% of the time. Subgrouped RTRL was 10 times faster than 
RTRL, whereas BPTT was 28 times faster. 
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Figure 2: Suhgroupcd-RTRL 


