
818 Smotroff

Dataflow Architectures:
Flexible Platforms for

Neural Network Simulation

Ira G. Smotroff
MITRE-Bedford Neural Network Group

The MITRE Corporation
Bedford, MA 01730

ABSTRACT

Dataflow architectures are general computation engines optimized for
the execution of fme-grain parallel algorithms. Neural networks can be
simulated on these systems with certain advantages. In this paper, we
review dataflow architectures, examine neural network simulation
performance on a new generation dataflow machine, compare that
performance to other simulation alternatives, and discuss the benefits
and drawbacks of the dataflow approach.

1 DATAFLOW ARCHITECTURES
Dataflow research has been conducted at MIT (Arvind & Culler, 1986) and elsewhere
(Hiraki, et. aI., 1987) for a number of years. Dataflow architectures are general
computation engines that treat each instruction of a program as a separate task which is
scheduled in an asynchronous, data-driven fashion. Dataflow programs are compiled into
graphs which explicitly describe the data dependencies of the computation. These graphs
are directly executed by the machine. Computations which are not linked by a path in the
graphs can be executed in parallel. Each machine has a large number of processing
elements with hardware that is optimized to reduce task switching overhead to a
minimum. As each computation executes and produces a result, it causes all of the
following computations that require the result to be scheduled. In this manner, fine grain
parallel computation is achieved, with the limit on the amount of possible parallelism
determined by the problem and the number of processing elements in the machine.

Dataflow Architectures: Flexible Platforms for Neural Network Simulation 819

-1 -1

a

Figure 1: XOR network and its dataflow graph.

1.1 NEURAL NETWORKS & DATAFLOW

The most powerful hardware platforms for neural network simulation were enumerated
in the DARPA Neural Network Study (Lincoln Laboratory, 1988): Supercomputers offer
programming in sequential languages at great cost. Systolic Arrays such as the eMU
WARP (pomerleau, 1988) and "Massively" Parallel machines such as the Connection
Machine (Hillis, 1987), offer power at increasingly reasonable costs, but require
specialized low-level programming to map the algorithm to the hardware. Specialized
VLSI and Optical devices (Alspector, 1989) (Farhat, 1987) (Rudnick & Hammerstrom,
1989) offer fast implementations of fixed algorithms1.

Although dataflow architectures were not included on the DARPA list, there are good
reasons for using them for neural network simulation. First, there is a natural mapping
between neural networks and the dataflow graphs used to encode dataflow programs (see
Figure 1). By expressing a neural network simulation as a dataflow program, one gains
the data synchronization and the parallel execution efficiencies that the dataflow
architecture provides at an appropriate fine grain of abstraction. The close mapping may
allow simple compilation of neural network specifications into executable programs.
Second, this ease of programming makes the approach extremely flexible, so one can get
good performance on a new algorithm the first time it is run, without having to spend
additional time determining the best way to map it onto the hardware. Thus dataflow
simulations may be particularly appropriate for those who develop new learning
algorithms or architectures. Third, high level languages are being developed for dataflow
machines, providing environments in which neural nets can be combined with standard
calculations; this can't be done with much of the specialized neural network hardware.
Last, there may be ways to optimize dataflow architectures for neural network simulation.

1 Hammerstrom's device (Rudnick & Hammerstrom, 1989) may be micro-programmable.

820 Smotroff

from
netwo(' 'k

'" ,

wait - match
~

J

'W
h

oJ

"'

IJ
"'

~ ALU ~
instruction ~ ~

form
""" ,

fetch token

~ form ~
tag

structure .oJ
memory

Figure 2: Schematic of a tagged-token dataflow processor.

2 TAGGED-TOKEN DATAFLOW

\

'" to
network --

The Tagged-token dataflow approach represents each computation product as a token
which is passed to following computations. A schematic view of a tagged-token
processor is shown in Figure 2. Execution proceeds in a Wait-Match-Store cycle which
achieves data synchronization. An instruction to be executed waits in the wait-match
queue for a token with its operand. If a match occurs, the incoming token contains its
operand and one of two things happens: for a monadic operation, the instruction is
executed and the result is passed on; for a dyadic operation, a check is made to see if the
operand is the first or the second one to arrive. If it's the first, the location representing
the instruction is tagged, the operand is stored, and the instruction continues to wait. If
it's the second (Le. the instruction is tagged already) the instruction is executed and a
token containing the result is sent to all computations requiring the result. A schematic
view of the execution of the XOR network of Figure 1 on a tagged-token dataflow
machine is illustrated in Figure 3.

2.1 SPLIT-PHASE TRANSACTIONS

In fine-grain parallel computations distributed over a number of physical devices, the
large number of network transactions represent a potential bottleneck. The tagged-token
dataflow architecture mitigates this problem in a way that enhances the overall parallel
execution time. Each network transaction is split into two phases. A process requests an
external data value and then goes to sleep. When the token bearing the requested value
returns, the process is awakened and the computation proceeds. In standard approaches, a
processor must idle while it waits for a result. This non-blocking approach allows other
computations to proceed while the value is in transit, thus masking memory and network
latencies. Independent threads of computation may be interwoven at each cycle, thus
allowing the maximum amount of parallel execution at each cycle. As long as the amount
of parallelism in the task (Le. the length of each processor's task queue) is larger than the
network latency, the processors never idle. Consequently, massively parallel applications
such as neural simulations benefit most from the split-phase transaction approach.

Dataflow Architectures: Flexible Platforms for Neural Network Simulation 821

3 NEURAL NETWORK DATAFLOW SIMULATION

To illustrate neural network execution on a dataflow processor, the XOR network in
Figure 1 was coded in the dataflow language ID (Nikhil, 1988) and run on the MIT GIT A
(Q.raph Interpreter for Tagged-token Architecture) simulator (Nikhil, 1988). Figures 4-6
are ALU operations profiles with the vertical axis representing the number of processors
that could be simultaneously kept busy (i.e. the amount of parallelism in the task at a
particular instance) and the horizontal axis representing elapsed computation cycles. In
addition, Figures 4 & 5 are ideal simulations with communication latency of zero time
and an infinite number of processors available at all times. The ideal profile width
represents the absolute minimum time in which the dataflow calculation could possibly
be performed, and is termed the critical path. Figure 4 shows the execution profile for a
single linear threshold neuron processing its two inputs. The initial peak: activity of eleven
corresponds to initialization activities, with later peaks corresonding to actual
computation steps. The complexity of the profile may be attributed to various dataflow
synchronization mechanisms. In figure 5, the ideal execution profile for the XOR net,
note the initialization peak: similar to the one appearing in the single neuron profile; the
peak parallelism of fifty-five corresponds to all five neuron initializations occuring
simultaneously. This illustrates the ability of the dataflow approach to automatically
expose the inherent parallelism in the overall computation. Note also that the critical path
of one hundred fifty one is substantially less than five times the single neuron critical path
of eighty-five. Wherever possible, the dataflow approach has performed computation in
parallel, and the lengthening of the critical path can be attributed to those computations
which had to be delayed until prior computations became available.

Figure 6 represents the execution of the same XOR net under more realistic conditions in
which each token operation is subject to a finite network delay. The regular spacing of the
profile corresponds to the effect of the network delays. The interesting thing to observe is
that the overall critical path length has only increased slightly to one hundred seventy
because the average amount of parallelism available as tokens come in from the net is
higher. Dataflow's ability to interleave computations thus compensates for much of the
network latency effects.

I SS ZQQ

Figure 4: Ideal parallelism profile for dataflow execution - single threshold neuron unit.

822 Smotroff

1

Figure 3: Execution of the XOR network of Figure 1 on a tagged-token
dataflow processor. The black dots represent active tokens, the white dots
represent waiting tokens, and the shaded boxes represent enabled operations
executing.

1

Dataflow Architectures: Flexible Platforms for Neural Network Simulation 823

55 1

s91

I

38

299

Figure 5: Ideal parallelism profile for dataflow execution of XOR network.

"1
_a j

I

39

29

la

9~~~~~~~~~~~~~--________ _

9 19a 289

Figure 6: Parallelism profile for dataflow execution of XOR with constant
communication latency.

3.1 COST OF THE DATAFLOW APPROACH

The Tagged-Token Dataflow machine executing an ID program performs two to three
times as many instructions as an IBM 370 executing an equivalent FORTRAN program.
The overhead in dataflow programs is attributable to mechanisms which manage the
asynchronous parallel execution. Similar overhead would probably exist in specialized
neural network simulators written for dataflow machines. However, this overhead can be
justified because the maximum amount of parallelism in the computation is exposed in a
straightforward manner, which requires no additional programming effort. On
conventional multiprocessors, parallelism must be selectively tailored for each problem.
As the amount of parallelism increases, the associated costs increase as well; often they
will eventually surpass the cost of dataflow (Arvind ,Culler & Ekanadham, 1988). Thus
the parallel performance on the dataflow machine will often surpass that of alternative
platforms despite the overhead.

824 Smotroff

4 THE MONSOON ARCHITECTURE
Early dataflow implementations using a Tagged Token approach had a number of
practical barriers (papadoupoulos, 1988). While useful results were achieved, the cost and
expansion limits of the associative memory used for token matching made them
impractical. However, the systems did prove the utility of the Tagged Token approach ..

Recently, the MONSOON architecture (papadoupoulos, 1988) was developed to remedy
the problems encountered with Tagged Token architectures. The token-matching problem
has been solved by treating each token descriptor as an address in a global memory space
which is partitioned among the processors in the system; matching becomes a simple
RAM operation.

An initial MONSOON prototype has been constructed and a 8 processor machine is
scheduled to be built in 1990. Processor elements for that machine are CMOS gate-array
implementations being fabricated by Motorola. Each processor board will have a 100 ns
cycle time and process at a rate of 7-8 MIPS!2-4 MFLOPS. Total memory for the 8
processor machine is 256 MBytes. Interconnect is provided by a 100 MByte!s packet
switch network. The throughput of the 8 processor machine is estimated at 56-64 MIPS!
16-32 MFLOPs. This translates to 2-3 million connections per second per processor and
16-24 million connections per second for the machine. Monsoon performance is in the
supercomputer class while the projected Monsoon cost is significantly less due to the use
of standard process technologies.

A 256 processor machine with CMOS VLSI processors is envisioned. Estimated
performance is 40 MIPS per processor and 10,240 MIPS for the machine. Aggregate
neural simulation performance is estimated at 2.5-3.8 billion connections per second,
assuming an interconnect network of suitable performance.

5 CONCLUSIONS
i) Dataflow architectures should be cost effective and flexible

platforms for neural network simulation if they become widely
available.

ii) As general architectures. their performance will not exceed that of
specialized neural network architectures.

iii) Maximum parallelism is attained simply by using the dataflow
approach: no machine or problem-specific tuning is needed. Thus
dataflow is seen as an excellent tool for empirical simulation.
Excellent performance may be obtained on cost effective hardware,
with no special effort required for performance improvement.

iv) Dataflow architectures optimized for neural network simulation
performance may be possible.

References

Alspector, J .• Gupta, B. and Allen, R. B. (1989) Performance of a Stochastic Learning
Microchip. In D. S. Touretzky (ed.). Advances in Neural Information Processing Systems
1, 748-760. San Mateo, CA: Morgan Kaufmann.

Dataflow Architectures: Flexible Platforms for Neural Network Simulation 825

Arvind and Culler, D. E .. (1986) Dataflow Architectures, MIT Technical Report
MIT/LCS/fM-294, Cambridge, MA.

Arvind, Culler, D. E., Ekanadham, K. (1988) The Price of Asynchronous Parallelism: An
Analysis of Dataflow Architectures. MIT Laboratory for Computer Science, Computation
Structures Group Memo 278.

DARPA Neural Network Study (1988) Lincoln Laboratory, MIT, Lexington, MA.

Farhat, N.H., and Shai, Z. Y.(1987) Architectures and Methodologies for Self­
Organization and Stochastic Learning in Opto-Electronic Analogs of Neural Nets. In
Proceedings of IEEE First International Conference on Neural Networks, ill:565-576.

Hillis, W. D.(1986) The Connection Machine, Cambridge, MA: The MIT Press.

Hiraki, K., Sekiguchi, S. and Shimada, T. (1987) System Architecture of a Dataflow
Supercomputer. Technical Report, Computer Systems Division, Electrotechnical
Laboratory, 1-1-4 Umezono, Sakura-mura, Niihari-gun, lbaraki, 305, Japan.

Nikhil, R. S. (1988) Id World Reference Manual, Computational Structures Group, MIT
Laboratory for Computer Science, Cambridge, MA.

Pomerleau, D. A., Gusciora, G. L., Touretsky and D. S., Kung, H. T.(1988) Neural
Simulation at Warp Speed: How we got 17 Million Connections per Second. In
Proceedings of the IEEE International Conference on Neural Networks, II: 143-150, San
Diego.

Papadoupoulos, G. M. (1988) Implementation of a General Purpose Dataflow
Multiprocessor, Phd. Thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA.

Rudnick, M. and Hammerstrom, D.(1989) An Interconnection Structure for Wafer Scale
Neurocomputers. In Proceedings of the 1988 Connectionist Models Summer School. San
Mateo, CA: Morgan Kaufmann.

PART X:
HISTORY OF NEURAL NETWORKS

