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ABSTRACT 

Dataflow architectures are general computation engines optimized for 
the execution of fme-grain parallel algorithms. Neural networks can be 
simulated on these systems with certain advantages. In this paper, we 
review dataflow architectures, examine neural network simulation 
performance on a new generation dataflow machine, compare that 
performance to other simulation alternatives, and discuss the benefits 
and drawbacks of the dataflow approach. 

1 DATAFLOW ARCHITECTURES 
Dataflow research has been conducted at MIT (Arvind & Culler, 1986) and elsewhere 
(Hiraki, et. aI., 1987) for a number of years. Dataflow architectures are general 
computation engines that treat each instruction of a program as a separate task which is 
scheduled in an asynchronous, data-driven fashion. Dataflow programs are compiled into 
graphs which explicitly describe the data dependencies of the computation. These graphs 
are directly executed by the machine. Computations which are not linked by a path in the 
graphs can be executed in parallel. Each machine has a large number of processing 
elements with hardware that is optimized to reduce task switching overhead to a 
minimum. As each computation executes and produces a result, it causes all of the 
following computations that require the result to be scheduled. In this manner, fine grain 
parallel computation is achieved, with the limit on the amount of possible parallelism 
determined by the problem and the number of processing elements in the machine. 
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Figure 1: XOR network and its dataflow graph. 

1.1 NEURAL NETWORKS & DATAFLOW 

The most powerful hardware platforms for neural network simulation were enumerated 
in the DARPA Neural Network Study (Lincoln Laboratory, 1988): Supercomputers offer 
programming in sequential languages at great cost. Systolic Arrays such as the eMU 
WARP (pomerleau, 1988) and "Massively" Parallel machines such as the Connection 
Machine (Hillis, 1987), offer power at increasingly reasonable costs, but require 
specialized low-level programming to map the algorithm to the hardware. Specialized 
VLSI and Optical devices (Alspector, 1989) (Farhat, 1987) (Rudnick & Hammerstrom, 
1989) offer fast implementations of fixed algorithms1. 

Although dataflow architectures were not included on the DARPA list, there are good 
reasons for using them for neural network simulation. First, there is a natural mapping 
between neural networks and the dataflow graphs used to encode dataflow programs (see 
Figure 1). By expressing a neural network simulation as a dataflow program, one gains 
the data synchronization and the parallel execution efficiencies that the dataflow 
architecture provides at an appropriate fine grain of abstraction. The close mapping may 
allow simple compilation of neural network specifications into executable programs. 
Second, this ease of programming makes the approach extremely flexible, so one can get 
good performance on a new algorithm the first time it is run, without having to spend 
additional time determining the best way to map it onto the hardware. Thus dataflow 
simulations may be particularly appropriate for those who develop new learning 
algorithms or architectures. Third, high level languages are being developed for dataflow 
machines, providing environments in which neural nets can be combined with standard 
calculations; this can't be done with much of the specialized neural network hardware. 
Last, there may be ways to optimize dataflow architectures for neural network simulation. 

1 Hammerstrom's device (Rudnick & Hammerstrom, 1989) may be micro-programmable. 
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Figure 2: Schematic of a tagged-token dataflow processor. 

2 TAGGED-TOKEN DATAFLOW 
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The Tagged-token dataflow approach represents each computation product as a token 
which is passed to following computations. A schematic view of a tagged-token 
processor is shown in Figure 2. Execution proceeds in a Wait-Match-Store cycle which 
achieves data synchronization. An instruction to be executed waits in the wait-match 
queue for a token with its operand. If a match occurs, the incoming token contains its 
operand and one of two things happens: for a monadic operation, the instruction is 
executed and the result is passed on; for a dyadic operation, a check is made to see if the 
operand is the first or the second one to arrive. If it's the first, the location representing 
the instruction is tagged, the operand is stored, and the instruction continues to wait. If 
it's the second (Le. the instruction is tagged already) the instruction is executed and a 
token containing the result is sent to all computations requiring the result. A schematic 
view of the execution of the XOR network of Figure 1 on a tagged-token dataflow 
machine is illustrated in Figure 3. 

2.1 SPLIT-PHASE TRANSACTIONS 

In fine-grain parallel computations distributed over a number of physical devices, the 
large number of network transactions represent a potential bottleneck. The tagged-token 
dataflow architecture mitigates this problem in a way that enhances the overall parallel 
execution time. Each network transaction is split into two phases. A process requests an 
external data value and then goes to sleep. When the token bearing the requested value 
returns, the process is awakened and the computation proceeds. In standard approaches, a 
processor must idle while it waits for a result. This non-blocking approach allows other 
computations to proceed while the value is in transit, thus masking memory and network 
latencies. Independent threads of computation may be interwoven at each cycle, thus 
allowing the maximum amount of parallel execution at each cycle. As long as the amount 
of parallelism in the task (Le. the length of each processor's task queue) is larger than the 
network latency, the processors never idle. Consequently, massively parallel applications 
such as neural simulations benefit most from the split-phase transaction approach. 
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3 NEURAL NETWORK DATAFLOW SIMULATION 

To illustrate neural network execution on a dataflow processor, the XOR network in 
Figure 1 was coded in the dataflow language ID (Nikhil, 1988) and run on the MIT GIT A 
(Q.raph Interpreter for Tagged-token Architecture) simulator (Nikhil, 1988). Figures 4-6 
are ALU operations profiles with the vertical axis representing the number of processors 
that could be simultaneously kept busy (i.e. the amount of parallelism in the task at a 
particular instance) and the horizontal axis representing elapsed computation cycles. In 
addition, Figures 4 & 5 are ideal simulations with communication latency of zero time 
and an infinite number of processors available at all times. The ideal profile width 
represents the absolute minimum time in which the dataflow calculation could possibly 
be performed, and is termed the critical path. Figure 4 shows the execution profile for a 
single linear threshold neuron processing its two inputs. The initial peak: activity of eleven 
corresponds to initialization activities, with later peaks corresonding to actual 
computation steps. The complexity of the profile may be attributed to various dataflow 
synchronization mechanisms. In figure 5, the ideal execution profile for the XOR net, 
note the initialization peak: similar to the one appearing in the single neuron profile; the 
peak parallelism of fifty-five corresponds to all five neuron initializations occuring 
simultaneously. This illustrates the ability of the dataflow approach to automatically 
expose the inherent parallelism in the overall computation. Note also that the critical path 
of one hundred fifty one is substantially less than five times the single neuron critical path 
of eighty-five. Wherever possible, the dataflow approach has performed computation in 
parallel, and the lengthening of the critical path can be attributed to those computations 
which had to be delayed until prior computations became available. 

Figure 6 represents the execution of the same XOR net under more realistic conditions in 
which each token operation is subject to a finite network delay. The regular spacing of the 
profile corresponds to the effect of the network delays. The interesting thing to observe is 
that the overall critical path length has only increased slightly to one hundred seventy 
because the average amount of parallelism available as tokens come in from the net is 
higher. Dataflow's ability to interleave computations thus compensates for much of the 
network latency effects. 
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Figure 4: Ideal parallelism profile for dataflow execution - single threshold neuron unit. 
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Figure 3: Execution of the XOR network of Figure 1 on a tagged-token 
dataflow processor. The black dots represent active tokens, the white dots 
represent waiting tokens, and the shaded boxes represent enabled operations 
executing. 
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Figure 5: Ideal parallelism profile for dataflow execution of XOR network. 
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Figure 6: Parallelism profile for dataflow execution of XOR with constant 
communication latency. 

3.1 COST OF THE DATAFLOW APPROACH 

The Tagged-Token Dataflow machine executing an ID program performs two to three 
times as many instructions as an IBM 370 executing an equivalent FORTRAN program. 
The overhead in dataflow programs is attributable to mechanisms which manage the 
asynchronous parallel execution. Similar overhead would probably exist in specialized 
neural network simulators written for dataflow machines. However, this overhead can be 
justified because the maximum amount of parallelism in the computation is exposed in a 
straightforward manner, which requires no additional programming effort. On 
conventional multiprocessors, parallelism must be selectively tailored for each problem. 
As the amount of parallelism increases, the associated costs increase as well; often they 
will eventually surpass the cost of dataflow (Arvind ,Culler & Ekanadham, 1988). Thus 
the parallel performance on the dataflow machine will often surpass that of alternative 
platforms despite the overhead. 
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4 THE MONSOON ARCHITECTURE 
Early dataflow implementations using a Tagged Token approach had a number of 
practical barriers (papadoupoulos, 1988). While useful results were achieved, the cost and 
expansion limits of the associative memory used for token matching made them 
impractical. However, the systems did prove the utility of the Tagged Token approach .. 

Recently, the MONSOON architecture (papadoupoulos, 1988) was developed to remedy 
the problems encountered with Tagged Token architectures. The token-matching problem 
has been solved by treating each token descriptor as an address in a global memory space 
which is partitioned among the processors in the system; matching becomes a simple 
RAM operation. 

An initial MONSOON prototype has been constructed and a 8 processor machine is 
scheduled to be built in 1990. Processor elements for that machine are CMOS gate-array 
implementations being fabricated by Motorola. Each processor board will have a 100 ns 
cycle time and process at a rate of 7-8 MIPS!2-4 MFLOPS. Total memory for the 8 
processor machine is 256 MBytes. Interconnect is provided by a 100 MByte!s packet 
switch network. The throughput of the 8 processor machine is estimated at 56-64 MIPS! 
16-32 MFLOPs. This translates to 2-3 million connections per second per processor and 
16-24 million connections per second for the machine. Monsoon performance is in the 
supercomputer class while the projected Monsoon cost is significantly less due to the use 
of standard process technologies. 

A 256 processor machine with CMOS VLSI processors is envisioned. Estimated 
performance is 40 MIPS per processor and 10,240 MIPS for the machine. Aggregate 
neural simulation performance is estimated at 2.5-3.8 billion connections per second, 
assuming an interconnect network of suitable performance. 

5 CONCLUSIONS 
i) Dataflow architectures should be cost effective and flexible 

platforms for neural network simulation if they become widely 
available. 

ii) As general architectures. their performance will not exceed that of 
specialized neural network architectures. 

iii) Maximum parallelism is attained simply by using the dataflow 
approach: no machine or problem-specific tuning is needed. Thus 
dataflow is seen as an excellent tool for empirical simulation. 
Excellent performance may be obtained on cost effective hardware, 
with no special effort required for performance improvement. 

iv) Dataflow architectures optimized for neural network simulation 
performance may be possible. 
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PART X: 
HISTORY OF NEURAL NETWORKS 


