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ABSTRACT 

If neurons sum up their inputs in a non-linear way, as some simula­
tions suggest, how is this distributed fine-grained non-linearity ex­
ploited during learning? How are all the small sigmoids in synapse, 
spine and dendritic tree lined up in the right areas of their respective 
input spaces? In this report, I show how an abstract atemporal highly 
nested tree structure with a quadratic transfer function associated 
with each branchpoint, can self organise using only a single global 
reinforcement scalar, to perform binary classification tasks. The pro­
cedure works well, solving the 6-multiplexer and a difficult phoneme 
classification task as well as back-propagation does, and faster. 
Furthermore, it does not calculate an error gradient, but uses a statist­
ical scheme to build moving models of the reinforcement signal. 

1. INTRODUCTION 
The computational territory between the linearly summing McCulloch-Pitts neuron and 
the non-linear differential equations of Hodgkin & Huxley is relatively sparsely popu­
lated. Connectionists use variants of the former and computational neuroscientists 
struggle with the exploding parameter spaces provided by the latter. However, evi­
dence from biophysical simulations suggests that the voltage transfer properties of 
synapses, spines and dendritic membranes involve many detailed non-linear interac­
tions, not just a squashing function at the cell body. Real neurons may indeed be 
higher-order nets. 

For the computationally-minded, higher order interactions means, first of all, quadratic 
terms. This contribution presents a simple learning principle for a binary tree with a 
logistic/quadratic transfer function at each node. These functions, though highly 
nested, are shown to be capable of changing their shape in concert. The resulting tree 
structure receives inputs at its leaves, and outputs an estimate of the probability that 
the input pattern is a member of one of two classes at the top. 
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A number of other schemes exist for learning in higher-order neural nets. Sigma-Pi 
units, higher-order threshold logic units (Giles & Maxwell, 87) and product units (Dur­
bin & Rumelhart, 89) are all examples of units which learn coefficients of non-linear 
functions. Product unit networks, like Radial Basis Function nets, consist of a layer of 
non-linear transformations, followed by a normal Perceptron-style layer. The scheme 
presented here has more in common with the work reviewed in Barron (88) (see also 
Tenorio 90) on polynomial networks in that it uses low order polynomials in a tree of 
low degree. The differences lie in a global rather than layer-by-Iayer learning scheme, 
and a transfer function derived from a gaussian discriminant function. 

2. THE ARTIFICIAL DENDRITIC TREE (ADT) 
The network architecture in Figure I(a) is that of a binary tree which propagates real 
number values from its leaf nodes (or inputs) to its root node which is the output. In 
this simple formulation, the tree is construed as a binary classifier. The output node 
signals a number between 1 and 0 which represents the probability that the pattern 
presented to the tree was a member of the positive class of patterns or the negative 
class. Because the input patterns may have extremely high dimension and the tree is, 
at least initially, constrained to be binary, the depth of the tree may be significant, at 
least more than one might like to back-propagate through. A transfer function is asso­
ciated with each 'hidden' node of the tree and the output node. This will hereafter be 
referred to as a Z{unction, for the simple reason that it takes in two variables X and 
Y, and outputs Z. A cascade of Z-functions performs the computation of the tree and 
the learning procedure consists of changing these functions. The tree is referred to as 
an Artificial Dendritic Tree or ADT with the same degree of licence that one may talk 
of Artificial Neural Networks, or ANNs. 

(a) z (x) z (x ,y) 1.0 (d) 

(b) I (c) A 
x X Y 

lnput nodes 

Figure 1: (a) an Artificial Dendritic Tree, (b) a ID Z-node (c) a 2D Z-node (d) 
A ID Z-function constructed from2 gaussians (e) approximating a step function 

2.1. THE TRANSFER FUNCTION 

The idea behind the Z-function is to allow the two variables arriving at a node to 
interact locally in a non-linear way which contributes to the global computation of the 
tree. The transfer function is derived from statistical considerations. To simplify, con­
sider the one-dimensional case of a variable X travelling on a wire as in Figure 1 (b). 
A statistical estimation procedure could observe the distribution of values of X when 
the global pattern was positive or negative and derive a decision rule from these. In 
Figure I(d), the two density functions f+(x) and f-(x) are plotted. Where they meet, 
the local computation must answer that, based on its information, the global pattern is 
positively classified with probability 0.5. Assuming that there are equal numbers of 
positive and negative patterns (ie: that the a priori probability of positive is 0.5), it is 
easy to see that the conditional probability of being in the positive class given our 
value for X, is given by equation (1). 



492 Bell 

z (x) = P [class=+ve Ix] = [+ex) 
[+(x)+[-(x) 

(1) 

This can be also derived from Bayesian reasoning (Therrien, 89). The fonn of z (x) is 
shown with the thick line in Figure l(d) for the given [+(x) and [-(x). If [+(x) and 
[-ex) can be usefully approximated by normal (gaussian) curves as plotted above, 
then (1) translates into (2): 

z ex) = 1. t ,input = ~-(x) - ~+(x) + In[ a:] (2) 
1 +e -mp" a 

This can be obtained by substituting equation (4) overleaf into (1) using the definitions 
of a and ~ given. The exact form a and ~ take depends on the number of variables 
input. The first striking thing is that the form of (2) is exactly that of the back­
propagation logistic function. The second is that input is a polynomial quadratic 
expression. For Z-functions with 2 inputs (x ,y) using formulas (4.2) it takes the fonn: 

w lX2+W2Y2+w~+w 4X+wsY+w6 (3) 

The w' s can be thought of as weights just as in backprop, defining a 6D space of 
transfer functions. However optimising the w's directly through gradient descent may 
not be the best idea (though this is what Tenorio does), since for any error function E, 
aE law 4 = x aE law 1 = Y aE law 3. That is, the axes of the optimisation are not indepen­
dent of each other. There are, however, two sets of 5 independent parameters which 
the w's in (3) are actually composed from if we calculate input from (4.2). These are 
Jl:, cr;, 11;, cr; and r+, denoting the means, standard deviations and correlation 
coefficient defining the two-dimensional distribution of (x ,y) values which should be 
positively classified. The other 5 variables define the negative distribution. 
Thus 2 Gaussians (hereafter referred to as the positive and negative models) define a 
quadratic transfer function (called the Z{unction) which can be interpreted as express­
ing conditional probability of positive class membership. The shape of these functions 
can be altered by changing the statistical parameters defining the distributions which 
undedy them. In Figure l(d), a 1-dimensional Z-function is seen to be sigmoidal 
though it need not be monotonic at all. Figure 2(b)-(h) shows a selection of 2D Z­
functions. In general the Z-function divides its N-dimensional input space with a N-1 
dimensional hypersurface. In 2D, this will be an ellipse, a parabola, a hyperbola or 
some combination of the three. Although the dividing surface is quadratic, the Z­
function is still a logistic or squashing function. The exponent input is actually 
equivalent to the log likelihood ratio or In(j+(x)/j-(x». commonly used in statistics. 
In this work, 2-dimensional gaussians are used to generate Z-functions. There are 
compelling reasons for this. One dimensional Z-functions are of little use since they 
do not reduce information. Z-functions of dimension higher than 1 perform optimal 
class-based information reduction by propagating conditional probabilities of class 
membership. But 2D Z-functions using 2D gaussians are of particular interest because 
they include in their function space all boolean functions of two variables (or at least 
analogue versions of these functions). For example the gaussians which would come to 
represent the positive and negative exemplar patterns for XOR are drawn as ellipses in 
Figure 2(a). They have equal means and variances but the negative exemplar patterns 
are correlated while the positive ones are anti-correlated. These models automatically 
give rise to the XOR surface in Figure 2(b) if put through equation (2). An interesting 
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observation is that a problem of Nth order (XOR is 2nd order, 3-parity is 3rd order 
etc) can be solved by a polynomial of degree N (Figure 2d). Since 2nd degree polyno­
mials like (3) are used in our system, there is one step up in power from 1st degree 
systems like the Perceptron. Thus 3-parity is to the Z-function unit what XOR is to the 
Perceptron (in this case not quadratically separable). 

A GAUSSIAN IS: f (x)=.le-IJ(%) (4) 
a 

in one dimension: a=(21t) 1120'% 

~(x ) (x -Jl% )2 
20'x 2 

in two dimensions: a=21tO'xO'y(l-r2)112 

(4.1.1) 

(4.1.2) 

(4.2.1) 

1 [ (X-J,1x)2 (y -~ )2 
~(x ,y)= 2(l-r2) 0'% 2 + 0'/ 

2r (x -J,1x )(y -~ ) 1 
O'x O'y 

(4.2.2) 

in n dimensions: a=(21t)"/2 IK 11/2 

Jl%=E [x] 

~<!)= ~ (!-mlK-1<!-m) 

is the expected value or mean of x 

is the variance of x 

(4.n.l) 

(4.n.2) 

O';:E [x 2]-Jl% 2 

E[xy]~%Jly 
r is the correlation coef ficiem of a bivariate gaussian 

m=E [!] is the mean vector of a multivariate gaussian 

K=E [<!-m)<!-m)T] is the covariance matrix of a multivariate· gaussian 
with IK 1 its determinant 

(i) 

(j) /l\. 
(k) M 

Figure 2: (a) two anti-(;orrelated gaussians seen from above (b) the resulting Z­
function (c)-(h) Some other 20 Z-functions. (i) 3-parity in a cube cannot be 
solved by a 30 Z-function (j) but yields to a cascade of 20 ones (k). 

2.2. THE LEARNING PROCEDURE 

If gaussians are used to model the distribution of inputs x which give positive and 
negative classification errors, rather than just the distribution of positively and nega­
tively classified x, then it is possible to formulate an incremental learning procedure 
for training Z-functions. This procedure enables the system to deal with data which is 
not gaussianly distributed. 
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2.2.1. Without hidden units: learning a step function. 
A simple example illustrates this principle. Consider a network consisting entirely of a 
I-dimensional Z-function. as in Figure 1(b). The input is a real number from 0 to 1 
and the output is to be a step function, such that 0.5-1.0 is classed positively (output 
1.0) and 0.0-0.5 should output 0.0. The 4 parameters of the Z-function (Jl+ ,Jl-,cr+,crl 
are initialised randomly and example patterns are presented to the 'tree'. On each 
presentation t, the error 0 in the response is calculated by 0, ~ d, -0" the desired 
minus the actual output at time t, and 2 of the parameters are altered. If the error is 
positive, the positive model is altered, otherwise the negative model is altered. Chang­
ing a model consists of 'sliding' the estimates of the appropriate first and second 
moments (E[x] and E [x2]) according to a 'moving-average' scheme: 

E [x], ~ to,x,+(1-to,)E [x ]'-1 (5.1) 

(5.2) 

where t is a plasticity or learning rate, x, is the value input and E [x ]'-1 was the previ­
ous estimate of the mean value of x for the appropriate gaussian. This rule means that 
at any moment, the parameters determining the positive and negative models are 
weighted averages of recent inputs which have generated errors. The influence which a 
particular input has had decays over time. This algorithm was run with £=0.1. After 
100 random numbers had been presented, with error signals from the step-function 
changing the models, the models come to well represent the distribution of positive 
and negative inputs. At this stage the models and their associated Z-function are those 
shown in Figure l(d). But now, most of the error reinforcement will be coming from 
a small region around 0.5, which means that since the gaussians are modelling the 
errors, they will be drawn towards the centre and become narrower. This has the 
effect, Figure l(e), of increasing the gain of the sigmoidal Z-function. In the limit, it 
will converge to a perfect step function as the gaussians become infinitesimally 
separated delta functions. This initial demonstration shows the automatic gain adjust­
ment property of the Z-function. 

2.2.2. With hidden units: the 6-multiplexer. 
The first example showed how a 1D Z-function can minimise error by modelling it. 
This example shows how a cascade of 2-dimensional Z-functions can co-operate to 
solve a 3rd order problem. A 6-multiplexer circuit receives as input 6 bits, 4 of which 
are data bits and 2 are address bits. If the address bits are 00, it must output the con­
tents of the first data bit, if 01, the second, 10 the third and 11 the fourth. There are 
64 different input patterns. Choosing an tree architecture is a difficult problem in gen­
eral, but the first step is to choose one which we know can solve the problem. This is 
illustrated in Figure 3(a). This is an architecture for which there exists a solution using 
binary Boolean functions. 

The tree's solution was arrived at as follows: each node was initialised with 10 ran­
dom values: E[x]' E[y], E[x2], E[y2] and E[xy] for each of its positive and negative 
models. The learning rate t was set to 0.02 and input patterns were generated and 
propagated up to the top node, where an error measurement was made. The error was 
then broadcast globally to all nodes, each one, in effect, being told to respond more 
positively (or negatively) should the same circumstances arise again, and adjusting 
their Z-functions in the same way as equations (5). This time, however, 5 parameters 
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were adjusted per node per presentation. instead of 2. Again. which model (positive 
or negative) is adjusted depends on the sign of the error at the top of the tree. 

The tree learns after about 200 random bit patterns are presented (7 seconds on a 
Symbolics). After 300 presentations (the state depicted in Figure 3a), the mean 
squared error is falling steadily to zero. An adequate back-propagation network takes 
6000 presentations to converge on a solution. The solution achieved is a rather messy 
combination of half-hearted XORs and NXORs, and ambiguous AND/ORs. The prob­
lem was tried with different trees. In general any tree of sufficient richness can solve 
the problem though larger trees take longer. Trees for which no nice solutions exist. 
ie: those with fewer than 6 well-chosen inputs from the address bits can sometimes 
still perform rather well. A tree with straight convergence. only one contact per 
address bit, can still quickly approach 80% performance, but further training is des­
tructive. Figure 3(b) shows a tree trained to output 1 if half or more of its 8 inputs 
were on. 

Al rr===---n 

7 ... 
(a) 8 "~_--'I (b) 

Figure 3: Solving the 6-multiplexer (a) and the 8-majority predicate (b) 

2.2.3. Phoneme classification. 

A good question was if such a tree could perform well on a large problem, so a typi­
cal back-propagation application was attempted. Space does not permit a full account 
here. but the details appear in Bell (89). The data came from 100 speakers speaking 
the confusable E-set phonemes (B, D, E and V). This was the same data as that used 
by Lang & Hinton (88). Four trees were built out of 192 input units and the trees 
trained using a learning schedule of E falling from 0.01 to 0.001 over the course of 30 
presentations of each of 668 training patterns. Generalisation to a test set was 88.5%, 
0.5% worse than an equivalently simple backprop net A more sophisticated backprop 
net, using time-delays and multiresolution training could reach 93% generalisation. 
Thirty epochs with the trees took some 16 hours on a Sun 3-260 whereas the backprop 
experiments were performed on a Convex supercomputer. The conclusion from these 
experiments is that trees some 8 levels deep are capable of almost matching normal 
back-propagation on a large classification task in a fraction of the training time. 
Attempts to build time-symmetry into the trees have not so far been successful. 

3. DISCUSSION 
Even within the context of other connectionist leaming procedures, there is something 
of an air of mystery about this one. The apparatus of gradient descent, either for indi­
vidual units or for the whole tree is absent or at least hidden. 
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3.1. HOW DOES IT WORK? 

It is necessary to reflect on the effect of modelling errors. Models of errors are an 
attempt to push a node's outputs towards the edge of its parent's input square. Where 
the model is perfect, it is simple for the node above to model the model by applying a 
sigmoid, and so on to the top of the tree, where the error disappears. But the model­
ling is actually done in a totally distributed and collaborative way. The identification 
of 1.0 with positive error (top output too small) means that Z-functions are more 
likely to be monotonic towards (1,1) the further they are from the inputs. 

Two standard problems are overcome in unusual ways. The first, credit assignment, is 
solved because different Z-functions are able to model different errors, giving them 
different roles. Although all nodes receive the same feedback, some changes to a 
node's model will be swiftly undone when the new errors that result from them begin 
to be broadcast. Other nodes can change freely either because they are not yet essen­
tial to the computation or because there exist alterations of their models tolerable to 
the nodes above. The second problem is stability. In backprop, the way the error 
diffuses through the net ensures that the upper weights are slaved to the lower ones 
because the lower are changing more slowly. In this system, the upper nodes are 
slaved to the lower ones because they are explicitly modelling their activities. Con­
versely, the lower nodes will never be allowed to change too quickly since the errors 
generated by sluggish top nodes will throw them back into the behaviour the top 
nodes expect For a low enough learning rate e, the solutions are stable. 

Amongst the real problems with this system are the following. First, the credit assign­
ment is not solved for units receiving the same input variables, making many normal 
connectionist architectures impossible. Second, the system can only deal with 2 
classes. Third, as with other algorithms, choice of architecture is a 'black art'. 

3.2. BIOPHYSICS & REAL NEURONS 

The name' Artificial Dendritic Tree' is perhaps overdoing it. The tree has no dynamic 
properties, activation flows in only one direction, the branchpoints of the tree routinely 
implement XOR and the 'cell' as a whole implements phoneme recognition (only a 
small step from grandmothers). The title was kept because what drove the work was a 
search for a computational explanation of how fine-grained local non-linearities of low 
degree could combine in a learning process. Work in computational neuroscience, in 
particular with compartmental models (Koch & Poggio 87; RaIl & Segev 88; Segev et 
al 89, Shepherd & Brayton 87) have shown that it is likely that many non-linear 
effects take place between synapse and soma. Synaptic transfer functions can be sig­
moidal, spines with active channels may mutually excite each other (even implement 
boolean computations) and inhibitory inputs can 'veto' firing in a highly non-linear 
fashion (silent inhibition). The dendritic membrane itself is filled with active ion 
channels, whose boosting or quenching properties depend in a complex way on the 
intracellular voltage levels or Ca'Jn. concentration (itself dependent on voltage). Thus 
we may be able to consider the membrane itself as a distributed processing system, 
meaning that the synapses are no longer the privileged sites of learning which they 
have tended to be since Hebb. Active channels can serve to implement threshold func­
tions just as well at the dendritic branchpoints as at the soma, where they generate 
spikes. There are many different kinds of ion channel (Yamada et aI, 89) with inho­
mogenous distributions over the dendritic tree. A neuron's DNA may generate a cer­
tain 'base set' of channel proteins that span a non-linear function space just as our 
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parameters span the Z-function space. The properties of a part of dendritic membrane 
could be seen as a point in channel space. Viewed this way. the neuron becomes one 
large computer. When one considers the Purkinje cell of the cerebellum with 100.000 
inputs, as many spines. a massive arborisation full of active channels, many of them 
Ca-permeable or Ca-dependent. with spiking and plateau potentials occurring in the 
dendritic tree. the notion that the cell may be implementing a 99.999 dimensional 
hyperplane starts to recede. here is an extra motivation for considering the cell as a 
complex computer. Algorithms such as back-propagation would require feedback cir­
cuits to send error. If the cell is the feedback unit, then reinforcement can occur as a 
spike at the soma rein vades the dendritic tree. Thus nerves may not spike just for 
axonal purposes. but also to penetrate the electrotonic length of the dendrites. This 
was thought to be a component of Hebbian learning at the synapses, but it could be 
the basis of more if the dendritic membrane computes. 
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