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A central problem in connectionist modelling is the control of 
network and architectural resources during learning. In the present 
approach, weights reflect a coarse prediction history as coded by a 
distribution of values and parameterized in the mean and standard 
deviation of these weight distributions. Weight updates are a 
function of both the mean and standard deviation of each 
connection in the network and vary as a function of the error signal 
("stochastic delta rule"; Hanson, 1990). Consequently, the weights 
maintain information on their central tendency and their 
"uncertainty" in prediction. Such information is useful in 
establishing a policy concerning the size of the nodal complexity of 
the network and growth of new nodes. For example, during 
problem solving the present network can undergo "meiosis", 
producing two nodes where there was one "overtaxed" node as 
measured by its coefficient of variation. It is shown in a number of 
benchmark problems that meiosis networks can find minimal 
architectures, reduce computational complexity, and overall increase 
the efficiency of the representation learning interaction. 

1 Also a member or the Cognitive Science Laboratory, Princeton University, Princeton, NJ 08542 
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1 INTRODUCTION 
Search problems which involve high dimensionality, a-priori constraints and 
nonlinearities are hard. Unfortunately, learning problems in biological systems 
involve just these sorts of properties. Worse, one can characterize the sort of 
problem that organisms probably encounter in the real world as those that do not 
easily admit solutions that involve, simple averaging, optimality, linear 
approximation or complete knowledge of data or nature of the problem being solved. 
We would contend there are three basic properties of real learning result in an ill­
defined set problems and heterogeneous set of solutions: 

• Data are continuously available but incomplete; the learner must constantly 
update parameter estimates with stingy bits of data which may represent a very 
small sample from the possible population 

• Conditional distributions of response categories with respect to given features are 
unknown and must be estimated from possibly unrepresentative samples. 

• Local (in time) information may be misleading, wrong, or non stationary, 
consequently there is a poor tradeoff between the present use of data and waiting 
for more and possibly flawed data- consequently updates must be small and 
revocable. 

These sorts of properties represent only one aspect of the learning problem faced by 
real organisms in real environments. Nonetheless, they underscore why "weak" 
methods-methods that assume little about the environment in which they are 
operating -are so critical. 

1.1 LEARNING AND SEARCH 

It is possible to precisely characterize the search problem in terms of the resources or 
degress of freedom in the learning model. If the task the learning system is to 
perform is classification then the system can be analyzed in terms of its ability to 
dichotomize stimulus points in feature space. 

Dichotomization Capability: Network Capacity Using a linear fan-in or hyperplane 
type neuron we can characterize the degrees of freedom inherent in a network of 
units with thresholded output. For example, with linear boundaries, consider 4 
points, well distributed in a 2-dimensional feature space. There are exactly 14 
linearly separable dichotomies that can be formed with the 4 target points. However, 
there are actually 16 (24) possible dichotomies of 4 points in 2 dimensions 
consequently, the number of possible dichotomies or arbitrary categories that are 
linearly implementable can be thought of as a capacity of the linear network in k 
dimensions with n examples. The general category capacity measure (Cover, 1965) 
can be written as: 

Ie (n-I)! 
C(n,k)=2 E ,n> k+l 

j~ (n-l- j)!j! 
(I) 
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Note the dramatic growth in C as a function of k, the number of feature dimensions, 
for example, for 25 stimuli in a 5 dimensional feature space there are 100,670 linear 
dichotomies. U ndertermination in these sorts of linear networks is the rule not the 
exception. This makes the search process and the nature of constraints on the search 
process critical in finding solutions that may be useful in the given problem domain. 

1.2 THE STOCHASTIC DELTA RULE 

Actual mammalian neural systems involve noise. Responses from the same individual 
unit in isolated cortex due to cyclically repeated identical stimuli will never result in 
identical bursts Transmission of excitation through neural networks in living systems 
is essentially stochastic in nature. The typical activation (unction used in 
connectionist models must be assumed to be an average over many intervals, since 
any particular neuronal pulse train appears quite random [in fact, Poisson; (or 
example see Burns,1968; Tomko & Crapper, 1974]. 

This suggests that a particular neural signal in time may be modeled by a 
distribution of synaptic values rather then a single value. Further this sort of 
representation provides a natural way to affect the synaptic efficacy in time. In order 
to introduce noise adaptively, we require that the synaptic modification be a function 
of a random increment or decrement proportional in size to the present error signal. 
Consequently, the weight delta or gradient itself becomes a random variable based on 
prediction performance. Thus, the noise that seems ubiquitous and apparently 
useless throughout the nervous system can be turned to at least three advantages in 
that it provides the system with mechanisms for (1) entertaining multiple response 
hypotheses given a single input (2) maintaining a coarse prediction history that is 
local, recent, and cheap, thus providing punctate credit assignment opportunities and 
finally, (3) revoking parameterizations that are easy to reach, locally stable, but 
distant from a solution. 

Although it is possible to implement the present principle a number of different ways 
we chose to consider a connection strength to be represented as a distribution of 
weights with a finite mean and variance (see Figure 1). 

Figure 1: Weights as Sampling Distributions 

A forward activation or recognition pass consists o( randomly sampling a weight 
from the existing distribution calculating the dot product and producing an output 
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for that pass. 

Xi = EWi:Yj 
j 

where the sample is found from, 

S(Wij=Wi:) = J.l 1II + (jill <b(wij;O,l) 
IJ IJ 

(2) 

(3) 

Consequently S( Wii=Wi~·) is a random variable constructed from a finite mean J.l 1II 
IJ 

and standard deviation (jill based on a normal random variate (<b) with mean zero 
IJ 

and standard deviation one. Forward recognition pasSes are therefore one to many 
mappings, each sampling producing a different weight depending on the mean and 
standard deviation of the particular connection while the system remains stochastic. 

In the present implementation there are actually three separate equations for 
learning. The mean of the weight distribution is modified as a function of the usual 
gradient based upon the error, however, note that the random sample point is 
retained for this gradient calculation and is used to update the mean of the 
distribution for that synapse. 

8E 
J.l 1II (n+l)=a(--)+J.l 1II (n) 

IJ 8 • IJ WOO 
I) 

(4) 

Similarly the standard deviation of the weight distribution is modified as a function 
of the gradient, however, the sign of the gradient is ignored and the update can only 
increase the variance if an error results. Thus errors immediately increase the 
variance of the synapse to which they may be attributed. 

8E 
(jill (n+l) =.81 -- I + (jill (n) (5) 

IJ 8w~o IJ 
I) 

A third and final learning rule determines the decay of the variance of synapses in 
the network, 

(jill (n+l) = ~(jlll (n), ~<l. (6) 
I) IJ 

As the system evolves for ~ less than one, the last equation of this set guarantees that 
the variances of all synapses approach zero and that the system itself becomes 
deterministic prior to solution. For small ~ the system evolves very rapidly to 
deterministic, while larger )S allow the system to revisit chaotic states as needed 
during convergence. A simpler implementation of this algorithm involves just the 
gradient itself as a random variable (hence, the name "stochastic delta rule"), 
however this approach confounds the growth in variance of the weight distribution 
with the decay and makes parametric studies more complicated to implement. 

The stochastic delta rule implements a local, adaptive simulated annealing (cf. 
Kirkpatrick, S., Gelatt, C. D. & Veechi, M., 1983) process occuring at different rates 
in the network dependent on prediction history. Various benchmark tests of this 
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basic algorithm are discussed in Hanson (1990). 

1.3 MEIOSIS 

In the SDR rule disscussed above, the standard deviation of the weight distributions 
might be seen as uncertainty measure concerning the weight value and strength. 
Consequently, changes in the standard deviation can be taken as a measure of the 
"prediction value" of the connection. Hidden units with significant uncertainty have 
low prediction value and are performing poorly in reducing errors. IT hidden unit 
uncertainty increases beyond the cumulative weight value or "signal" to that unit 
then the complexity of the architecture can be traded off with the uncertainty per 
unit. Consequently, the unit "splits" into two units each copying half the architecture 
information to each of the new two units. 

Networks are initialized with a random mean and variance values (where the 
variance is started in the interval (10,-10)). Number of hidden units in all problems 
was initialized at one. The splitting policy is fixed for all problems to occur when 
both the C.V. {standard deviation relative to the mean} for the input and output to 
the hidden unit exceeds 100%, that is, when the composite variance of the connection 
strengths is 100% of the composite mean value of the connection strengths: 

E(1ii E(1 ile 

---> 1.0 and ---> 1.0 
Ell-ii Ell- ile 

Ie 

Meiosis then proceeds as follows (see Figure 2) 

• A forward stochastic pass is made producing an output 
• Output is compared to target producing errors which are then used to update 

the mean and variance of weight. 
• The composite input and output variance and means are computed for each 

hidden units 
• For those hidden units whose composite C.V.s are > 1.0 node splitting occurs; 

half the variance is assigned to each new node with a jittered mean centered at 
the old mean 

MEIOSIS 

Figure 2: Meiosis 
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There is no stopping criteria. The network stops creating nodes based on the 
prediction error and noise level ( P,~) . 

1.4 EXAMPLES 

1.4.1 Parity Benchmark: Finding the Right number of units 

Small parity problems (Exclusive-or and 3BIT parity) were used to explore sensitivity 
of the noise parameters on node splitting and to benchmark the method. All runs 
were with ftxed learning rate ( 1] = .5 ) and momentum ( a = .75). Low values of 
zeta ( < .7) produce minimal or no node splitting, while higher values (> .99) seem to 
produce continuous node spliting without regard to the problem type. Zeta was rlXed 
(.98) and beta, the noise per step parameter was varied between values .1 and .5. 
The following runs were unaffected by varying beta between these two values. 
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Figure 3: Number of Hidden Units at Convergence 

Shown in Figure 3 are 50 runs of Exclusive-or and 50 runs of 3 BIT PARITY. 
Histograms show for exclusive-or that almost all runs (>95%) ended up with 2 
hidden units while for the 3BIT PARITY case most runs produce 3 hidden units, 
however with considerably more variance, some ending with 2 while a few runs 
ended with as many 9 hidden units. The next figure (Figure 4) shows histograms for 
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Figure 4: Convergence Times 

the convergence time showing a slight advantage in terms of convergence for the 
meiosis networks for both exclusive-or and 3 BIT PARITY. 

1.4.2 Blood NMR Data: Nonlinear Separability 

In the Figure 5 data were taken from 10 different continuous kinds of blood 
measurements, including, total lipid content, cholesterol (mg/dl), High density lipids, 
low-density lipids, triglyceride, etc as well as some NMR measures. Subjects were 
previously diagnosed for presence (C) or absence (N) of a blood disease. 
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Figure 5: Blood NMR Separability 

8 

The data consisted of 238 samples, 146 Ns and 92 es. Shown in the adjoining figure 
is a Perceptron (linear discriminant analysis) response to the data. Each original 
data point is projected into the first two discriminant variables showing about 75% 
of the data to be linearly separable (k-k/ 2 jackknife tests indicate about 52% transfer 
rates). However, also shown is a rough non-linear envelope around one class of 
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subjects(N) showing the potentially complex decision region for this data. 

1.4.3 Meiosis Learning curves 

Data was split into two groups (118,120) for learning and transfer tests. Learning 
curves for both the meiosis network and standard back-propagation are shown in the 
Figure 6. Also shown in this display is the splitting rate for the meiosis network 
showing it grow to 7 hidden units and freezIng during the first 20 sweeps . 

_______ ~ _ ____ ~ __ . ______ L-______ .~ 

50 1IX1 150 200 s_ 

Figure 6: Learning Curves and Splitting Rate 

1.4.4 Transfer Rate 

.. -

Backpropagation was run on the blood data with 0 (perceptron), 2, 3, 4, 5, 6, 7, and 
20 hidden units. Shown is the median transfer rate of 3 runs for each hidden unit 
network size. Transfer rate seemed to hover near 65% as the number of hidden 
units approached 20. A meiosis network was also run 3 times on the data (using f3 
.40 and ~ .98). Transfer Rate shown in Figure 7 was always above 70% at the 7 
hidden unit number. 
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Figure 7: Transfer Rate as a Function of Hidden Unit Number 

1.5 Conclusions 

The key property of the present scheme is the integration of representational aspects 
that are sensitive to network prediction and at the same time control the 
architectural resources of the network. Consequently, with Meiosis networks it is 
possible to dynamically and opportunistically control network complexity and 
therefore indirectly its learning efficiency and generalization capacity. Meiosis 
Networks were defined upon earlier work using local noise injections and noise 
related learning rules. As learning proceeds the meiosis network can measure the 
prediction history of particular nodes and if found to be poor, can split the node and 
opportunistically to increase the resources of the network. Further experiments are 
required in order to understand different advantages of splitting policies and their 
affects on generalization and speed of learning. 
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