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ABSTRACT 

The goal in this work has been to identify the neuronal elements 
of the cortical column that are most likely to support the learning 
of nonlinear associative maps. We show that a particular style of 
network learning algorithm based on locally-tuned receptive fields 
maps naturally onto cortical hardware, and gives coherence to a 
variety of features of cortical anatomy, physiology, and biophysics 
whose relations to learning remain poorly understood. 

1 INTRODUCTION 

Synaptic modification is widely believed to be the brain's primary mechanism for 
long-term information storage. The enormous practical and theoretical importance 
of biological synaptic plasticity has stimulated interest among both experimental 
neuroscientists and neural network modelers, and has provided strong incentive for 
the development of computational models that can both explain and predict. 

We present here a model for the synaptic basis of associative learning in cerebral 
cortex. The main hypothesis of this work is that the principal output neurons 
of a cortical association area learn functions of their inputs as locally-generalizing 
lookup tables. As abstractions, locally-generalizing learning methods have a long 
history in statistics and approximation theory (see Atkeson, 1989; Barron & Barron, 
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Figure 1: A Neural Lookup Table. A nonlinear function of several variables may 
be decomposed as a weighted sum over a set of localized "receptive fields" units. 

1988). Radial Basis Function (RBF) methods are essentially similar (see Broomhead 
& Lowe, 1988) and have recently been discussed by Poggio and Girosi (1989) in 
relation to regularization theory. As is standard for network learning problems, 
locally-generalizing methods involve the learning of a map f(~) : ~ ~ y from 
example (~, y) pairs. Rather than operate directly on the input space, however, 
input vectors are first "decoded" by a population of "receptive field" units with 
centers ei that each represents a local, often radially-symmetric, region in the input 
space. Thus, an output unit computes its activation level y = L:i wig( x - ei), where 
9 defines a "radial basis function" , commonly a Gaussian, and Wi is its weight (Fig. 
1). The learning problem can then be characterized as one of finding weights w 
that minimize the mean squared error over the N element training set. Learning 
schemes of this type lend themselves directly to very simple Hebb-type rules for 
synaptic modification since the initially nonlinear learning problem is transformed 
into a linear one in the unknown parameters w (see Broomhead & Lowe, 1988). 

Locally-generalizing learning algorithms as neurobiological models date at least to 
Albus (1971) and Marr (1969, 1970); they have also been explored more recently by 
a number of workers with a more pure computational bent (Broomhead & Lowe, 
1988; Lapedes & Farber, 1988; Mel, 1988, 1989; Miller, 1988; Moody, 1989; Poggio 
& Girosi, 1989). 
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2 SIGMA-PI LEARNING 

Unlike the classic thresholded linear unit that is the mainstay of many current 
connectionist models, the output of a sigma-pi unit is computed as a sum of contri­
butions from a set of independent multiplicative clusters of input weights (adapted 
from Rumelhart & McClelland, 1986): y = O'(Ej WjCj), where Cj = rt ViXi is the 
product of weighted inputs to cluster j, Wj is the weight on cluster j as a whole, 
and 0' is an optional thresholding nonlinearity applied to the sum of total clus­
ter activity. During learning, the output may also by clamped by an unconditioned 
teacher input, i.e. such that y = ti(~)' Units of this general type were first proposed 
by Feldman & Ballard (1982), and have been used occasionally by other connec­
tionist modelers, most commonly to allow certain inputs to gate others or to allow 
the activation of one unit to control the strength of interconnection between two 
other units (Rumelhart & McClelland, 1986). The use of sigma-pi units as function 
lookup tables was suggested by Feldman & Ballard (1982), who cited a possible 
relevance to local dendritic interactions among synaptic inputs (see also Durbin & 
Rumelhart, 1989). 

In the present work, the specific nonlinear interaction among inputs to a sigma-pi 
cluster is not of primary theoretical importance. The crucial property of a cluster 
is that its output should be AND-like, i.e . selective for the simultaneous activity 
of all of its k input lines!. 

2.1 NETWORK ARCHITECTURE 

We assume an underlying d-dimensional input space X E Rd over which functions 
are to be learned. Vectors in X are represented by a population X of N units 
whose state is denoted by ~ E RN. Within X, each of the d dimensions of X is 
individually value-coded, i.e. consists of a set of units with gaussian receptive fields 
distributed in overlapping fashion along the range of allowable parameter values, 
for example, the angle of a joint, or the orientation of a visual stimulus at a specific 
retinal location. (A more biologically realistic case would allow for individual units 
in X to have multi-dimensional gaussian receptive fields, for example a 4-d visual 
receptive field encoding retinal x and y, edge orientation, and binocular disparity.) 

We assume a map t(~) : ~ ~ y. is to be learned, where the components ofy' E RM are 
represented by an output population Y of M units. According to the familiar single­
layer feedforward network learning paradigm, X projects to Y via an "associational" 
pathway with modifiable synapses. We consider the task of a single output unit Yi 
(hereafter denoted by y), whose job is to estimate the underlying teacher function 
ti(~) : ~ ~ y from examples. Output unit y is assumed to have access to the entire 
input vector ~, and a single unconditioned teacher input ti. We further assume that 

1 A local threshold function can act as an AND in place of a multiplication, and for purposes of 
biological modeling, is a more likely dendritic mechanism than pure multiplication. In continuing 
work, we are exploring the more detailed interactions between Hebb-type learning rules and various 
post-synaptic nonlinearities, specifically the NMDA channel, that could underlie a multiplication 
relation among nearby inputs. 
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all possible clusters Cj of size 1 through k = k maz pre-exist in y's dendritic field, 
with cluster weights Wj initially set to 0, and input weights Vi within each cluster set 
equal to 1. Following from our assumption that each of the input lines Xi represents 
a I-dimensional gaussian receptive field in X, a multiplicative cluster of k such 
inputs can yield a k-dimensional receptive field in X that may then be weighted . 
In this way, a sigma-pi unit can directly implement an RBF decomposition over X. 
Additionally, since a sigma-pi unit is essentially a massively parallel lookup table 
with clusters as stored table entries, it is significant that the sigma-pi function is 
inherently modular, such that groups of sigma-pi units that receive the same teacher 
signal can, by simply adding their outputs, act as a single much larger virtual sigma­
pi unit with correspondingly increased table capacity2. A neural architecture that 
allows system storage capacity to be multiplied by a factor of k by growing k neurons 
in the place of one, is one that should be strongly preferred by biological evolution. 

2.2 THE LEARNING RULE 

The cluster weights Wj are modified during training according to the following self­
normalizing Hebb rule: 

wi = a cip tp - f3W j, 

where a and f3 are small positive constants, and cip and tp are, respectively, the jth 
cluster response and teacher signal in state p. The steady state of this learning rule 
occurs when Wj = ~ < cit >, which tries to maximize the correlation3 of cluster out­
put and teacher signal over the training set, while minimizing total synaptic weight 
for all clusters. The inputs weights Vi are unmodified during learning, representing 
the degree of cluster membership for each input line. 

We briefly note that because this Hebb-type learning rule is truly local, i.e. depends 
only upon activity levels available directly at a synapse to be modified, it may be 
applied transparently to a group of neurons driven by the same global teacher input 
(see above discussion of sigma-pi modularity). Error-correcting rules that modify 
synapses based on a difference between desired vs. actual neural output do not 
share this property. 

3 TOWARD A BIOLOGICAL MODEL 

In the remainder of this paper we examine the hypothesis that sigma-pi units un­
derlie associative learning in cerebral cortex. To do so, we identify the six essential 
elements of the sigma-pi learning scheme and discuss the evidence for each: i) a pop­
ulation of output neurons, ii) a focal teacher input, iii), a diffuse association input, 
iv) Hebb-type synaptic plasticity, v) local dendritic multiplication (or thresholding), 
and vi) a cluster reservoir. 

Following Eccles (1985), we concern ourselves here with the cytoarchitecture of 
"generic" association cortex, rather than with the more specialized (and more often 
studied) primary sensory and motor areas. We propose the cortical circuit of fig. 

2This assumes the global thresholding nonlinearity q is weak, i.e. has an extended linear range. 
3Strictly speaking, the average product. 
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Figure 2: Elements of the cortical column in a generic association cortex. 

2 to contain all of the basic elements necessary for associative learning, closely 
paralleling the accounts of Marr (1970) and Eccles (1985) at this level of description. 
We limit our focus to the cortically-projecting "output" pyramids oflayers II and III, 
which are posited to be sigma-pi units. These cells are a likely locus of associative 
learning as they are well situated to receive both teacher and associational input 
pathways. With reference to the modularity property of sigma-pilearning (sec. 2.1), 
we interpret the aggregates of layer II/III pyramidal cells whose apical dendrites 
rise toward the cortical surface in tight clumps (on the order of 100 cells, Peters, 
1989), as a single virtual sigma-pi unit. 

3.1 THE TEACHER INPUT 

We tentatively define the "teacher" input to an association area to be those inputs 
that terminate primarily in layer IV onto spiny stellate cells or small pyramidal 
cells. Lund et al. (1985) points out that spiny stellate cells are most numerous 
in primary sensory areas, but that the morphologically similar class of small pyra­
midal cells in layer IV seem to mimick the spiny stellates in their local, vertically 
oriented excitatory axonal distributions. The layer IV spiny stellates are known 
to project primarily up (but also down) a narrow vertical cylinder in which they 
sit, probably making powerful "cartridge" synapses onto overlying pyramidal cells. 
These excitatory interneurons are presumably capable of strongly deplorarizing en­
tire output cells (Szentagothai, 1977), thus providing the needed unit-wide teacher 
signals to the output neurons. We therefore assumethis teacher pathway plays a 
role analagous to the presumed role of cerebellar climbing fibers (Albus, 1971; Marr, 
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1969} The inputs to layer IV can be of both thalamic and/or cortical origin. 

3.2 THE ASSOCIATIONAL INPUT 

A second major form of extrinsic excitatory input with access to layer II/III pyra­
midal cells is the massive system of horizontal fibers in layer I. The primary source 
of these fibers is currently believed to be long range excitatory association fibers 
from both other cortical and subcortical areas (Jones, 1981). In accordance with 
Marr (1970) and Eccles (1985), we interpret this system of horizontal fibers, which 
virtually permeates the dendritic fields of the layer II/III pyramidal cells, as the pri­
mary conditioned input pathway at which cortical associative learning takes place. 
There is evidence that an individual layer I fibers can make excitatory synapses 
on apical dendrites of pyramidal cells across an area of cortex 5-6mm in diameter 
(Szentagothai, 1977). 

3.3 HEBB RULES, MULTIPLICATION, AND CLUSTERING 

The process of cluster formation in sigma-pi learning is driven by a local Hebb-type 
rule. Long term Hebb-type synaptic modification has been demonstrated in several 
cortical areas, dependent only upon local post-synaptic depolarization (Kelso et al., 
1986), and thought to be mediated by the the voltage-dependent NMDA channel 
(see Brown et al., 1988). In addition to the standard tendency for LTP with pre- and 
post-synaptic correlation, sigma-pi learning implicitly specifies cooperation among 
pre-synaptic units, in the sense that the largest increase in cluster weight Wj occurs 
when all inputs Xi to a cluster are simultaneously and strongly active. This type of 
cooperation among pre-synaptic inputs should follow directly from the assumption 
that local post-synaptic depolarization is the key ingredient in the induction of LTP. 
In other words, like-activated synaptic inputs must inevitably contribute to each 
other's enhancement during learning to the extent they are clustered on a post­
synaptic dendrite. This type of cooperativity in learning gives key importance to 
dendritic space in neural learning, and has not until very recently been modelled at 
a biophysical level (T. Brown, pers. comm; J. Moody, pers. comm.). 

In addition to its possible role in enhancing like-activated synaptic clusters however, 
the NMDA channel may be hypothesized to simultaneously underlie the "multiplica­
tive" interaction among neighboring inputs needed for ensuring cluster-selectivity 
in sigma-pi learning. Thus, if sufficiently endowed with NMDA channels, cortical 
pyramidal cells could respond highly selectively to associative input "vectors" whose 
active afferents are spatially clumped, rather than scattered uniformly, across the 
dendritic arbor. The possibility that dendritic computations could include local 
multiplicative nonlinearities is widely accepted (e.g. Shepherd et al., 1985; Koch et 
al., 1983). 

3.4 A VIRTUAL CLUSTER RESERVOIR 

The abstract definition of sigma-pi learning specifies that all possible clusters Cj of 
size 1 < k < kmax pre-exist on the "dendrites" of each virtual sigma-pi unit (which 
we have previously proposed to consist of a vertically aggregated clump of 100 
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pyramidal cells that receive the same teacher input from layer 4). During learning, 
the weight on each cluster is governed by a simple Hebb rule. Since the number of 
possible clusters of size k overwhelms total available dendritic space for even small 
k 4 , it must be possible to create a cluster when it is needed. We propose that 
the complex 3-d mesh of axonal and dendritic arborizations in layer 1 are ideal for 
maximizing the probability that arbitrary (small) subsets of association axons cross 
near to each other in space at some point in their collective arborizations. Thus, 
we propose that the tangle ofaxons within a dendrite's receptive field gives rise to 
an enormous set of almost-clusters, poised to "latch" onto a post-synaptic dendrite 
when called for by a Hebb-type learning rule. This geometry of pre- and post­
synaptic interface is to be strongly contrasted with the architecture of cerebellum, 
where the afferent "parallel" fibers have no possibility of clustering on post-synaptic 
dendrites. 

Known biophysical mechamisms for the sprouting and guidance of growth cones 
during development, in some cases driven by neural activity seem well suited to the 
task of cluster formation over small distances in the adult brain. 

4 CONCLUSIONS 

The locally-generalizing, table-based sigma-pi learning scheme is a parsimonious 
mechanisms that can account for the learning of nonlinear associative maps in cere­
bral cortex. Only a single layer of excitatory synapses is modified, under the control 
of a Hebb-type learning rule. Numerous open questions remain however, for exam­
ple the degree to which clusters of active synapses scattered across a pyramidal 
dendritic tree can function independently, providing the necessary AND-like selec­
tivity. 
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