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ABSTRACT 

Two approaches were explored which integrate neural net classifiers 
with Hidden Markov Model (HMM) speech recognizers. Both at­
tempt to improve speech pattern discrimination while retaining the 
temporal processing advantages of HMMs. One approach used neu­
ral nets to provide second-stage discrimination following an HMM 
recognizer. On a small vocabulary task, Radial Basis Function 
(RBF) and back-propagation neural nets reduced the error rate 
substantially (from 7.9% to 4.2% for the RBF classifier). In a larger 
vocabulary task, neural net classifiers did not reduce the error rate. 
They, however, outperformed Gaussian, Gaussian mixture, and k­
nearest neighbor (KNN) classifiers. In another approach, neural 
nets functioned as low-level acoustic-phonetic feature extractors. 
When classifying phonemes based on single 10 msec. frames, dis­
criminant RBF neural net classifiers outperformed Gaussian mix­
ture classifiers. Performance, however, differed little when classi­
fying phones by accumulating scores across all frames in phonetic 
segments using a single node HMM recognizer. 

-This work was sponsored by the Department of the Air Force and the Air Force Office of 
Scientific Research. 
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Figure 1: Second stage discrimination system. HMM recognition is based on the 
accumulated scores from each node. A second stage classifier can adjust the weights 
from each node to provide improved discrimination. 

1 Introduction 

This paper describes some of our current efforts to integrate discriminant neural net 
classifiers into HMM speech recognizers. The goal of this work is to combine the 
temporal processing capabilities of the HMM approach with the superior recogni­
tion rates provided by discriminant classifiers. Although neural nets are well devel­
oped for static pattern classification, neural nets for dynamic pattern recognition 
require further research. Current conventional HMM recognizers rely on likelihood 
scores provided by non-discriminant classifiers, such as Gaussian mixture [11] and 
histogram [5] classifiers. Non-discriminant classifiers are sensitive to assumptions 
concerning the shape of the probability density function and the robustness of the 
Maximum Likelihood (ML) estimators. Discriminant classifiers have a number of 
potential advantages over non-discriminant classifiers on real world problems. They 
make fewer assumptions concerning underlying class distributions, can be robust to 
outliers, and can lead to efficient parallel analog VLSI implementation [4, 6, 7, 8]. 
Recent efforts in applying discriminant training to HMM recognizers have led to 
promising techniques, including Maximum Mutual Information (MMI) training [2] 
and corrective training [5]. These techniques maintain the same structure as in a 
conventional HMM recognizer but use a different overall error criteria to estimate 
parameters. We believe that a significant improvement in recognition rate will result 
if discriminant classifiers are included directly in the HMM structure. 

This paper examines two integration strategies: second stage classification and 
discriminant pre-processing. In second stage classification, discussed in Sec. 2, 
classifiers are used to provide post-processing for an HMM isolated word recognizer. 
In discriminant pre-processing, discussed in Sec. 3, discriminant classifiers replace 
the maximum likelihood classifiers used in conventional HMM recognizers. 
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2 Second Stage Classification 

HMM isolated-word recognition requires one Markov model per word. Recognition 
involves accumUlating scores for an unknown input across the nodes in each word 
model, and selecting that word model which provides the maximum accumulated 
score. In the case of discriminating between minimal pairs, such as those in the 
E-set vocabulary (the letters {BCDEGPTVZ}), it is desired that recognition be 
focused on the nodes that correspond to the small portion of the utterance that are 
different between words. In the second stage classification approach, illustrated in 
Fig. 1, the HMMs at the first layer are the components of a fully-trained isolated­
word HMM recognizer. The second stage classifier is provided with matching scores 
and duration from each HMM node. A simple second stage classifier which sums 
the matching scores of the nodes for each word would be equivalent to an HMM 
recognizer. It is hoped that discriminant classifiers can utilize the additional infor­
mation provided by the node dependent scores and duration to deliver improved 
recognition rates. 

The second stage system of Fig. 1 was evaluated using the 9 letter E-set vocabulary 
and the {BDG} vocabulary. Words were taken from the TI-46 Word database, 
which contains 10 training and 16 testing tokens per word per talker and 16 talkers. 
Evaluation was performed in the speaker dependent mode; thus, there were a total 
of 30 training and 48 testing tokens per talker for the {BDG }-set task and 90 
training and 144 testing tokens per talker for the E-set task. Spectral pre-processing 
consisted of extracting the first 12 mel-scaled cepstral coefficients [10], ignoring the 
oth cepstral coefficient (energy), for each 10 ms frame. An HMM isolated word 
recognizer was first trained using the forward-backward algorithm. Each word was 
modeled using 8 HMM nodes with 2 additional noise nodes at each end. During 
classification, each test word was segmented using the Viterbi decoding algorithm 
on all word models. The average matching score and duration of all non-noise nodes 
were used as a static pattern for the second stage classifier. 

2.1 Classifiers 

Four second stage classifiers were used: (1) Multi-layer perceptron (MLP) classifiers 
trained with back-propagation, (2) Gaussian mixture classifiers trained with the 
Expectation Maximization (EM) algorithm [9], (3) RBF classifiers [8] with weights 
trained using the pseudoinverse method computed via Singular Value Decomposi­
tion (SVD), and (4) KNN classifiers. Covariance matrices in the Gaussian mixture 
classifiers were constrained to be diagonal and tied to be the same between mixture 
components in all classes. The RBF classifiers were of the form 

Decide Class i = Argmax ~ w .. EXP (_IIX - ,1; 112 ) 
L..J " 2hu~ i ;=1 , 

(1) 
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acoustic vector input, 
class label, 
number of centers, 
weight from jth center to ith class output, 

_ jth center and variance, and 
spread factor. 

The center locations (Pi'S) were obtained from either k-means or Gaussian mixture 
clustering. The variances (Uj 's) were either the variances of the individual k-means 
clusters or those of the individual Gaussian mixture components, depending on 
which clustering algorithm was used. Results for k = 1 are reported for the KNN 
classifier because this provided best performance. 

The Gaussian mixture classifier was selected as a reference conventional non-discri­
minant classifier. A Gaussian mixture classifier can provide good models for multi­
modal and non-Gaussian distributions by using many mixture components. It can 
also generalize to the more common, well-known unimodal Gaussian classifier which 
provides poor performance when the input distribution is not Gaussian. Very few 
benchmarking studies have been performed to evaluate the relative performance of 
Gaussian mixture and neural net classifiers, although mixture models have been 
used successfully in HMM recognizers [11]. RBF classifiers were used because they 
train rapidly, and recent benchmarking studies show that they perform as well as 
MLP classifiers on speech problems [8]. 

GAUSSIAN 
ixtures per 

Class 

Centers (rom Gaussian mixture clustering, h=150. 
Centers (rom k-means clustering. h=lS0. 

Table 1: Percentage errors from the second stage classifier, averaged over all 16 
talkers. 

2.2 Results of Second Stage Classification 

Table 1 shows the error rates for the second stage system of Fig. 1, averaged 
over all talkers. The second stage system improved performance over the baseline 
HMM system when the vocabulary was small (B, D and G). Error rates decreased 
from 7.9% for the baseline HMM recognizer to 4.2% for the RBF second stage 
classifier. There was no improvement for the E-set vocabulary task. The best RBF 
second stage classifier degraded the error rate from 11.3% with the baseline HMM 
to 12.8%. In the E-set results, MLP and RBF classifiers, with error rates of 13.4% 
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and 12.8%, performed considerably better than the Gaussian (21.2%), Gaussian 
mixture (20.6%) and KNN classifiers (36.0%). 

The second stage approach is effective for a very small vocabulary but not for a larger 
vocabulary task. This may be due to a combination of limited training data and the 
increased complexity of decision regions as vocabulary size and dimensionality gets 
large. When the vocabulary size increased from 3 to 9, the input dimensionality 
of the classifiers scaled up by a factor of 3 (from 48 to 144) but the number of 
training tokens increased only by the same factor (from 30 to 90). It is, in general, 
possible for the amount of training tokens required for good performance to scale 
up exponentially with the input dimensionality. MLP and RBF classifiers appear 
to be affected by this problem but not as strongly as Gaussian, Gaussian mixture, 
and KNN classifiers. 

3 Discriminant Pre-Processing 

Second stage classifiers will not work well if the nodal matching scores do not lead to 
good discrimination. Current conventional HMM recognizers use non-discriminant 
classifiers based on ML estimators to generate these scores. In the discriminant 
pre-processing approach, the ML classifiers in an HMM recognizer are replaced by 
discriminant classifiers. 

All the experiments in this section are based on the phonemes /b,d,43/ from the 
speaker dependent TI-46 Word database. Spectral pre-processing consisted of ex­
tracting the first 12 mel-scaled cepstral coefficients and ignoring the oth cepstral 
coefficient (energy), for each 10 ms frame. For multi-frame inputs, adjacent frames 
were 20 msec. apart (skipping every other frame). The database was segmented 
with a conventional high-performance continuous-observation HMM recognizer us­
ing forced Viterbi decoding on the correct word. The phonemes fbi, /d/ and /dJ/ 
from the letters "B", "D" and "G" (/#_i/ context) were then extracted. This 
resulted in an average of 95 training and 158 testing frames per talker per word 
using the 10 training and 16 testing words per talker in the 16 talker database. 
Talker dependent results, averaged over all 16 talkers, are reported here. 

Preliminary experiments using MLP, RBF, KNN, Gaussian, and Gaussian mixture 
classifiers indicated that RBF classifiers with Gaussian basis functions and a spread 
factor of 50 consistently yielded close to best performance. RBF classifiers also 
provided much shorter training times than MLP classifiers. RBF classifiers (as in 
Eq. 1) with h = 50 were thus used in all experiments presented in this section. The 
parameters of the RBF classifiers were determined as described in Sec. 2.1 above. 

Gaussian mixture classifiers were used as reference conventional non-discriminant 
classifiers. In the preliminary experiments, they also provided close to best per­
formance, and outperformed KNN and unimodal Gaussian classifiers. Covariance 
matrices were constrained, as described in Sec. 2.1. Although full and indepen­
dent covariance matrices were advantageous for the unimodal Gaussian classifier 
and Gaussian mixture classifiers with few mixture components, best performance 
was provided using many mixture components and constrained covariance matri-
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Figure 2: Frame-level error rates for Gaussian tied-mixture and RBF classifiers as 
a function of the total number of unique centers. Multi-frame results had context 
frames adjoined together at the input. Centers for both classifiers were determined. 
using k-means clustering. 

ces. A Gaussian "tied-mixture" classifier was also used. This is a Gaussian mixture 
classifier where all classes share the same mixture components but have different 
mixture weights. It is trained in two stages. In the first stage, class independent 
mixture centers are computed by k-means clustering, and mixture variances are 
the variances of the individual k-means clusters. In the second stage, the ML esti­
mates of the class dependent mixture weights are computed while holding mixture 
components fixed. 

3.1 Frame Level Results 

Error rates for classifying phonemes based on single frames are shown in Fig. 2 for 
the Gaussian tied-mixture classifier (left) and RBF classifier (right). These results 
were obtained using k-means centers. Superior frame-level error rates were consis­
tently provided by the RBF classifier in all experimental variations of this study. 
This is expected since RBF classifiers use an objective function which is directly 
related to classification error, whereas the objective of non-discriminant classifiers, 
modeling the class dependent probability density functions, is only indirectly related 
to classification error. 

3.2 Phone Level Results 

In a single node HMM, classifier scores for the frames in a phone segment are accu­
mulated to obtain phone-level results. For conventional HMM recognizers that use 
non-discriminant classifiers, this score accumulation is done by assuming indepen­
dent frames, which allows the frame-level scores to be multiplied together: 

Prob(phone) Prob(Zl' Z2, ... ZN) 
Prob(zl)Prob(z2)' .. Prob(zN) 

(2) 

where z ... ZN are input frames in an N-frame phone. Eq. 2 does not apply to non­
discriminant classifiers. RBF classifier outputs are not constrained to lie between 
o and 1. They do not necessarily behave like probabilities and do not perform 
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Figure 3: Phone-level error rates using (a) Gauasian tied-mixture, (b) RBF and 
(c) 5% widened RBF classifiers, as a function of the total number of unique centers. 
Gauasian classifier phone-level results were obtained by accumulating frame-level 
scores via multiplication. RBF classifier frame-level scores were accumulated via 
addition. Symbols are as in Fig. 2. 

well when their frame scores are multiplied together. The RBF classifier's frame­
level scores were thus accumulated, instead, by addition. Phone-level error rates 
obtained by accumulating frame-level scores from the Gaussian tied-mixture and 
RBF classifiers are shown in Fig. 's 3( a) and (b). Best performance was provided by 
the Gaussian tied-mixture classifier with 50 k-means centers and no context frames 
(2.6% error rate, versus 3.9% for the RBF classifier with 75 centers and 1 context 
frame). 

The good phone-level performance provided by the Gaussian tied-mixture classifier 
in Fig. 3(a) is partly due to the near correctness of the Gaussian mixture distri­
bution assumption and the independent frames assumption (Eq. 2). To address 
the poor phone-level performance of the RBF classifier, we examine solutions that 
use smoothing to directly extend good frame-level results to acceptable phone­
level performance. Smoothing was performed both by passing the classifier outputs 
through a sigmoid function l and by increasing the spread (h in Eq. 1) after RBF 
weights were trained. Increasing h was more effective. 

Increasing h has the effect of "widening" the basis functions. This smoothes the 
discriminant functions produced by the RBF classifier to compensate for limited 
training data. If basis function widening occurs before weights are trained, then 
weights training will effectively compensate for the increase. This was verified in 
preliminary experiments, which showed that if h was increased before weights were 
trained, little difference in performance was observed as h varies from 50 to 200. 
Increasing h by 5% after weights were trained resulted in a slightly different frame­
level performance (sometimes better, sometimes worse), but a significant improve­
ment in phone-level results for all experimental variations of this study. In Fig. 
3(c), a 5% widening of the basis function improved the performance of the baseline 

1 The sigmoid function is of the fonn 31 = 1/ (1 + e-(Z-.5)2) where :r is the input (an output 

from the RBF classifier) and 31 is the output used for classification. 
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Figure 4: Phone-level error rates, as a function of the number of frames, for 
Gaussian mixture with 9 mixtures per class, and RBF classifiers with centers from 
the Gaussian mixture classifier (27 total centers for this 3 class task). 

RBF classifier. It did not, however, improve performance over that provided by the 
Gaussian tied-mixture classifier without context frames at the input. The lowest 
error rate provided by the smoothed RBF is now 3.4% using 75 k-means centers 
and 2 context frames (compared with 2.6% for the Gaussian tied-mixture classifier 
with 50 centers and no context). 

Error rates for the Gaussian mixture classifier with 9 mixtures per class is plotted 
versus the number of frames in Fig. 4, along with the results for RBF classifiers with 
centers taken from the Gaussian mixture classifier. Similar behavior was observed 
in all experimental variations of this study. There are three main observations: (1) 
The Gaussian mixture classifier without context frames provided best performance 
but degraded as the number of input frames increased, (2) RBF classifiers can out­
perform Gaussian mixture classifiers with many input frames, and (3) widening 
the basis functions after weights were trained improved the RBF classifier's perfor­
mance. 

4 Summary 

Two techniques were explored that integrated discriminant classifiers into HMM 
speech recognizers. In second-stage discrimination, an RBF second-stage classifier 
halved the error rates in a {BDG} vocabulary task but provided no performance 
improvement in an E-set vocabulary task. For integrating at the pre-processing 
level, RBF classifiers provided superior frame-level performance over conventional 
Gaussian mixture classifiers. At the phone-level, best performance was provided by 
a Gaussian mixture classifier with a single frame input; however, the RBF classifier 
outperformed the Gaussian mixture classifier when the input contained multiple 
context frames. Both sets of experiments indicated an ability for the RBF clas­
sifier to integrate the large amount of information provided by inputs with high 
dimensionality. They suggest that an HMM recognizer integrated with RBF and 
other discriminant classifiers may provide improved recognition by providing bet­
ter frame-level discrimination and by utilizing features that are ignored by current 
"state-of-the-art" HMM speech recognizers. This is consistent with the results of 
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Franzini [3] and Bourlard [1], who used many context frames in their implementa­
tion of discriminant pre-processing which embedded MLPs' into HMM recognizers. 

Current efforts focus on studying techniques to improve the performance of dis­
criminant classifier for phones, words, and continuous speech. Approaches include 
accumulating scores from lower level speech units and using objective functions that 
depend on higher level speech units, such as phones and words. Work is also being 
performed to integrate discriminant classification algorithms into HMM recognizers 
using Viterbi training. 
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