
A Cost Function for Internal Representations 733

A Cost Function for Internal Representations

Anders Krogh
The Niels Bohr Institute
Blegdamsvej 17
2100 Copenhagen
Denmark

G. I. Thorbergsson
Nordita

Blegdamsvej 17
2100 Copenhagen

Denmark

ABSTRACT

John A. Hertz
Nordita

Blegdamsvej 17
2100 Copenhagen

Denmark

We introduce a cost function for learning in feed-forward neural
networks which is an explicit function of the internal representa­
tion in addition to the weights. The learning problem can then
be formulated as two simple perceptrons and a search for internal
representations. Back-propagation is recovered as a limit. The
frequency of successful solutions is better for this algorithm than
for back-propagation when weights and hidden units are updated
on the same timescale i.e. once every learning step.

1 INTRODUCTION

In their review of back-propagation in layered networks, Rumelhart et al. (1986)
describe the learning process in terms of finding good "internal representations" of
the input patterns on the hidden units. However, the search for these representa­
tions is an indirect one, since the variables which are adjusted in its course are the
connection weights, not the activations of the hidden units themselves when specific
input patterns are fed into the input layer. Rather, the internal representations are
represented implicitly in the connection weight values.

More recently, Grossman et al. (1988 and 1989)1 suggested a way in which the
search for internal representations could be made much more explicit. They pro­
posed to make the activations of the hidden units for each of the input patterns

1 See also the paper by Grossman in this volume.

734 Krogh, Thorbergsson and Hertz

explicit variables to be adjusted iteratively (together with the weights) in the learn­
ing process. However, although they found that the algorithm they gave for making
these adjustments could be effective in some test problems, it is rather ad hoc and
it is difficult to see whether the algorithm will converge to a good solution.

If an optimization task is posed in terms of a cost function which is systematically
reduced as the algorithm runs, one is in a much better position to answer questions
like these. This is the motivation for this work, where we construct a cost function
which is an explicit function of the internal representations as well as the connection
weights. Learning is then a descent on the cost function surface, and variations in
the algorithm, corresponding to variations in the parameters of the cost function,
can be studied systematically. Both the conventional back-propagation algorithm
and that of Grossman et al. can be recovered in special limits of ours. It is easy to
change the algorithm to include constraints on the learning.

A method somewhat similar to ours has been proposed by Rohwer (1989)2. He con­
siders networks with feedback but in this paper we study feed-forward networks. Le
Cun has also been working along the same lines, but in a quite different formulation
(Le Cun, 1987).

The learning problem for a two-layer perceptron is reduced to learning in two simple
perceptrons and the search for internal representations. This search can be carried
out by gradient descent of the cost function or by an iterative method.

2 THE COST FUNCTION
We work within the standard architecture, with three layers of units and two of
connections. Input pattern number J1. is denoted e~, the corresponding target pat­
tern (f, and its internal representation u1. We use a convention in which i always
labels output units, j labels hidden units, and k labels input units. Thus Wij is
always a hidden-to-output weight and Wjle an input-to-hidden connection weight.
Then the actual activations of the hidden units when pattern J1. is the input are

S1 = g(hf) = g(2.: Wjke~) (1)
k

and those of the output units, when given the internal representations u1 as inputs,
are

Sf = g(hf) = g(2.: Wij (1) (2)
j

where g(h) is the activation function, which we take to be tanh h.

The cost function has two terms, one of which describes simple delta-rule learning
(Rumelhart et al., 1986) of the internal representations from the inputs by the first
layer of connections, and the other of which describes the same kind of learning of the

2See also the paper by Rohwer in this volume.

A Cost Function for Internal Representations 735

target patterns from the internal representations in the second layer of connections.
We use the "entropic" form for these terms:

_ " 1 (1-') (1 ± (f) " 1 (1-') (1 ± O'f) E - L....J '2 1 ± (i In 1 ± S~ + T L....J '2 1 ± O'j In 1 ± S~
ilJ± 1 j IJ±)

(3)

This form of the cost function has been shown to reduce the learning time (Solla
et al., 1988). We allow different relative weights for the two terms through the
parameter T. This cost function should now be minimized with respect to the two
sets of connection weights Wij and Wjk and the internal representations O'f.
The resulting gradient descent learning equations for the connection weights are
simply those of simple one-layer perceptrons:

8Wij ex: _ 8E = "(I'~ _ Sf:A)O'~ = "6f:A0'~
8t 8w' . L....J ~, I) L....J 1 }

IJ IJ IJ

(4)

8Wjk ex: _ 8E = TL(O'~ - Sf:A)e~ = TL 6~e~
8t 8Wjk IJ}} IJ }

(5)

The new element is the corresponding equation for the adjustment of the internal
representations:

80'f 8E L IJ hlJ h- 1 I-' -- ex: --- = 6· Wi}' + T . - Ttan 0'. 8t 80'''! ' } }
} i

(6)

The stationary values of the internal representations thus solve

(7)

which has a simple interpretation: The internal representation variables O'f are like
conventional units except that in addition to the field fed forward into them from
the input layer they also feel the back-propagated error field bf = Li 6f Wi;. The
parameter T regulates the relative weights of these terms.

Instead of doing gradient descent we have iterated equation (7) to find the internal
representations.

One of the advantages offormulating the learning problem in terms of a cost function
is that it is easy to implement constraints on the learning. Suppose we want to
prevent the network from forming the same internal representations for different
output patterns. We can then add the term

E = 1:: " 1'1:' I''! O'I!' O'~ 2 L....J ~,~, } }
ij IJ/I

(8)

736 Krogh, Thorbergsson and Hertz

to the energy. We may also want to suppress internal representations where the
units have identical values. This may be seen as an attempt to produce efficient
representations. The term

(9)

is then added to the energy. The parameters "(and "(' can be tuned to get the best
performance. With these new terms equation (7) for the internal representations
becomes

The only change in the algorithm is that this equation is iterated rather than (7).
These terms lead to better performance in some problems. The benefit of including
such terms is very problem-dependent. We include in our results an example where
these terms are useful.

3 SIMPLE LIMITS

It is simple to recover ordinary back-propagation in this model. It is the limit where
T ~ 1: Expanding (7) we obtain

(jj = Sf + T- 1 L 6fW ij(1 - tanh2 hj)
i

(11)

Keeping only the lowest-order surviving terms, the learning equations for the con­
nection weights then reduce to

(12)

and

(13)

which are just the standard back-propagation equations (with an entropic cost
function).

Now consider the opposite limit, T <:: 1. Then the second term dominates in (7):

(14)

A similar algorithm to the one of Grossman et al. is then to train the input-to­
hidden connection weights with these (jf as targets while training the hidden-to­
output weights with the (jf obtained in the other limit (7) as inputs. That is,
one alternates between high and low T according to which layer of weights one is
adjusting.

A Cost Function for Internal Representations 737

4 RESULTS

There are many ways to do the optimization in practice. To be able to make a
comparison with back-propagation, we have made simulations that, at high T, are
essentially the same as back-propagation (in terms of weight adjustment).

In one set of simulations we have kept the internal representations, uf, optimal with
the given set of connections. This means that after one step of weight changes we
have relaxed the u's. One can think of the u's as fast-varying and the weights as
slowly-varying. In the T ~ 1 limit we can use these simulations to get a comparison
with back-propagation as described in the previous section.

In our second set of simulations we iterate the equation for the u's only once after
one step of weight updating. All variables are then updated on the same timescale.
This turns out to increase the success rate for learning considerably compared to
the back-propagation limit. The u's are updated in random order such that each
one is updated once on the average.

The learning rate, momentum, etc. have been chosen optimally for the back-propa­
gation limit (large T) and kept fixed at these values for other values of T (though
no systematic optimization of parameters has been done).

We have tested the algorithm on the parity and encoding problems for T = 1 and
T = 10 (the back-propagation limit). Each problem was run 100 times and the
average error and success rate were measured and plotted as functions of learning
steps (time). One learning step corresponds to one updating of the weights.

For the parity problem (and other similar tasks) the learning did not converge for
T lower than about 3. When the weights are small we can expand the tanh on the
output in equation (7),

uf ~ tanh(hf + T- 1 L: Wij[(f - L: Wijluj,]), (15)
j'

so the uf sits in a spin-glass-like "local field" except for the connection to it­
self. When the algorithm is started with small random weights this self-coupling
(Ei(Wjj)2) is dominant. Forcing the self-coupling to be small at low w's and gradu­
ally increasing it to full strength when the units saturate improves the performance
a lot.

For larger networks the self-coupling does not seem to be a pr.oblem.

The specific test problems were:

Parity with 4 input units and 4 hidden units and all the 16 patterns in the training
set. We stop the runs after 300 sweeps of the training set. For T = 1 the self
coupling is suppressed.

Encoding with 8 input, 3 hidden and 8 output units and 8 patterns to learn (same
input as output). The 8 patterns have -1 at all units but one. We stop the
runs after 500 sweeps of the training set.

738 Krogh, Thorbergsson and Hertz

Both problems were run with fast-varying O"s and with all variables updated on
the same timescale. We determined the average learning time of the successful runs
and the percentage of the 100 trials that were successful. The success criterion was
that the sign of the output was correct. The learning times and success rates are
shown in table 1.

Table 1: Learning Times and Succes Rates

Learning times Success rate
T=l T=10 T=l T=10

Fast-vary- Parity 130±1O 97±6 30% 48%
ing O"S Encoding 167±1O 88±4 95% 98%

Slow-vary- Parity 146±1O 121±6 36% 57%
ing O"S Encoding 145±8 64±2 99% 100%

In figure 1 we plot the average error as a function of learning steps and the success
rate for each set of runs.

It can seem a disadvantage of this method that it is necessary to store the values
of the O"s between learning sweeps. We have therefore tried to start the iteration
of equation (7) with the value 0'1 = tanh(Ek Wi ken on the right hand side. This
does not affect the performance much.

We have investigated the effect of including the terms (8) and (9) in the energy.
For the same parity problem as above we get an improved success rate in the high
T limit.

5 CONCLUSION

The most striking result is the improvement in the success rate when all variables,
weights and hidden units, are updated once every learning step. This is in contrast
to back-propagation, where the values of the hidden units are completely deter­
mined by the weights and inputs. In our formulation this corresponds to relaxing
the hidden units fully in every learning cycle and having the parameter T » 1.
There is then an advantage in considering the hidden units as additional variables
during the learning phase whose values are not completely determined by the field
fed forward to them from the inputs.

The results indicate that the performance of the algorithm is best in the high T
limit.

For the parity problem the performance of the algorithm presented here is similar
to that of the back-propagation algorithm measured in learning time. The real
advantage is the higher frequency of successful solutions. For the encoding problem
the algorithm is faster than back-propagation but the success rate is similar (~
100%). The algorithm should also be comparable to back-propagation in cpu time

1.4

1.2

... 1.0 e ...
t) 0.8
t)
~ e 0.8
t)

~ 0.4

0.2

0.0
0 100 200

Learning cycles

0.&

0.4
...
t 0.3 t)

I» e
t)

0.2

~
0.1

0.0
0 100 200

Learning cycles

A Cost Function for Internal Representations 739

100

80

~
f 80
VI
VI

8 40
:s
rn

20

0
300 0

(A)

100

80

oS
f! 80
VI
VI

j 40

20

0
300 0

(B)

---, .. -
~ __ :::: ::..~ ... 0·······

<' " , .
~- .. " , .. ,

100 200 300
Learning cycles

r· .. -· ... -·,~·:;;-~·:.::~~:~· .. :·:·
" .,,:"

I' ,-:
! '
! " ~ ; ..
; ,
; .':"'
{ ,'.:'
I ',0·
; 'l
; I~; ! rO

J I.:
f : . ,

i ~
! '.:
I I·
• r
~ ..
. '

100 200 300 400 GOO
Learning cycles

Figure 1: (A) The left plot shows the error as a function of learning time for
the 4-parity problem for those runs that converged within 300 learning steps. The
curves are: T = 10 and slow sigmas (), T = 10 and fast sigmas (-.-.-.-.),
T = 1 and slow sigmas (------), and T = 1 and fast sigmas (.........). The right plot
is the percentage of converged runs as a function of learning time.
(B) The same as above but for the encoding problem.

740 Krogh, Thorbergsson and Hertz

in the limit where all variables are updated on the same timescale (once every
learning sweep).

Because the computational complexity is shifted from the calculation of new weights
to the determination of internal representations, it might be easier to implement
this method in hardware than back-propagation is. It is possible to use the method
without saving the array of internal representations by using the field fed forward
from the inputs to generate an internal representation that then becomes a starting
point for iterating the equation for (1.

The method can easily be generalized to networks with feedback (as in [Rohwer,
1989]) and it would be interesting to see how it compares to other algorithms for
recurrent networks. There are many other directions in which one can continue
this work. One is to try another cost function. Another is to use binary units and
perceptron learning.

References

Le Cun, Y (1987). Modeles Connexionistes de l'Apprentissage. Thesis, Paris.

Grossman, T, R Meir and E Domany (1988). Learning by Choice of Internal Rep­
resentations. Complex Systems 2, 555.

Grossman, T (1989). The CHIR Algorithm: A Generalization for Multiple Output
and Multilayered Networks. Preprint, submitted to Complex Systems.

Rohwer, R (1989) . The "Moving Targets" Training Method. Preprint, Edinburgh.

Rumelhart, D E, G E Hinton and R J Williams (1986). Chapter 8 in Parallel
Distributed Processing, vol 1 (D E Rumelhart and J L McClelland, eds), MIT Press.

SoHa, S A, E Levin, M Fleisher (1988). Accelerated Learning in Layered Neural
Networks . Complex Systems 2, 625.

PART IX:
HARDWARE IMPLEMENTATION

