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ABSTRACT 

It is well-known that neural responses in particular brain regions 
are spatially organized, but no general principles have been de­
veloped that relate the structure of a brain map to the nature of 
the associated computation. On parallel computers, maps of a sort 
quite similar to brain maps arise when a computation is distributed 
across multiple processors. In this paper we will discuss the rela­
tionship between maps and computations on these computers and 
suggest how similar considerations might also apply to maps in the 
brain. 

1 INTRODUCTION 

A great deal of effort in experimental and theoretical neuroscience is devoted to 
recording and interpreting spatial patterns of neural activity. A variety of map 
patterns have been observed in different brain regions and, presumably, these pat­
terns reflect something about the nature of the neural computations being carried 
out in these regions. To date, however, there have been no general principles for 
interpreting the structure of a brain map in terms of properties of the associated 
computation. In the field of parallel computing, analogous maps arise when a com­
putation is distributed across multiple processors and, in this case, the relationship 
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between maps and computations is better understood. In this paper, we will at­
tempt to relate some of the mapping principles from the field of parallel computing 
to the organization of brain maps. 

2 MAPS ON PARALLEL COMPUTERS 

The basic idea of parallel computing is to distribute the computational workload 
for a single task across a large number of processors (Dongarra, 1987; Fox and 
Messina, 1987). In principle, a parallel computer has the potential to deliver com­
puting power equivalent to the total computing power of the processors from which 
it is constructed; a 100 processor machine can potentially deliver 100 times the 
computing power of a single processor. In practice, however, the performance that 
can be achieved is always less efficient than this ideal. A perfectly efficient imple­
mentation with N processors would give a factor N speed up in computation time; 
the ratio of the actual speedup (1 to the ideal speedup N can serve as a measure of 
the efficiency f of a parallel implementation. 

(1 

f= -
N 

(1) 

For a given computation, one of the factors that most influences the overall perfor­
mance is the way in which the computation is mapped onto the available processors. 
The efficiency of any particular mapping can be analyzed in terms of two principal 
factors: load-balance and communication overhead. Load-balance is a measure of 
how uniformly the computational work load is distributed among the available pro­
cessors. Communication overhead, on the other hand, is related to the cost in time 
of communicating information between processors. 

On parallel computers, the load imbalance A is defined in terms of the average 
calculation time per processor T atJg and the maximum calculation time required by 
the busiest processor T maz : 

A = Tmaz - T atJg 

T atJg 
(2) 

The communication overhead 7] is defined in terms of the maximum calculation time 
T maz and the maximum communication time Tcomm: 

Tcomm 
7]=------

Tmaz + Tcomm 
(3) 

Assuming that the calculation and communication phases of a computation do not 
overlap in time, as is the case for many parallel computers, the relationship between 
efficiency f, load-imbalance A, and communicaticn overhead 7] is given by (Fox et 
al.,1988): 
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1-7] {=-
l+A 

(4) 

When both load-imbalance A and communication overhead 7] are small, the inef­
ficiency is approximately the sum of the contributions from load-imbalance and 
communication overhead: 

(~l-(7]+A) (5) 

When attempting to achieve maximum performance from a parallel computer, a 
programmer tries to find a mapping that minimizes the combined contributions of 
load-imbalance and communication overhead. In some cases this is accomplished by 
applying simple heuristics (Fox et al., 1988), while in others it requires the explicit 
use of optimization techniques like simulated annealing (Kirkpatrick et al., 1983) 
or even artificial neural network approaches (Fox and Furmanski, 1988). In any 
case, the optimal tradeoff between load imbalance and communication overhead 
depends on certain properties of the computation itself. Thus different types of 
computations give rise to different kinds of optimal maps on parallel computers. 

2.1 AN EXAMPLE 

In order to illustrate how different mappings can give rise to different computational 
efficiencies, we will consider the simulation of a single neuron using a multicompart­
ment modeling approach (Segev et al., 1989). In such a simulation, the model neu­
ron is divided into a large number of compartments, each of which is assumed to be 
isopotential. Each compartment is represented by an equivalent electric circuit that 
embodies information about the local membrane properties. In order to update the 
voltage of an individual compartment, it is necessary to know the local properties 
as well as the membrane voltages of the neighboring compartments. Such a model 
gives rise to a system of differential equations of the following form: 

(6) 

where em is the membrane capacitance, Vi is the membrane voltage of compartment 
i, 9k and Ek are the local conductances and their reversal potentials, and 9i±l,i are 
coupling conductances to neighboring compartments. 

When carrying out such a simulation on a parallel computer, where there are more 
compartments than processors, each processor is assigned responsibility for updating 
a subset of the compartments (Nelson et al., 1989). If the compartments represent 
equivalent computational loads, then the load-imbalance will be proportional to 
the difference between the maximum and the average number of compartments per 
processor. If the computer processors are fully interconnected by communication 
channels, then the communication overhead will be proportional to the number 
of interprocessor messages providing the voltages of neighboring compartments. If 



A 

A= 0.26 
11 = 0.04 

E = 0.76 

Computational Efficiency 63 

c 

\' A= 0.01 
:,:!' 11 = 0.07 

:i~ £ = 0.92 
~ 

Figure 1: Tradeoffs between load-imbalance A and communication overhead 7], 

giving rise to different efficiencies £ for different mappings of a multicompart­
ment neuron model. (A) a minimum-cut mapping that minimizes communication 
overhead but suffers from a significant load-imbalance, (B) a scattered mapping 
that minimizes load-imbalance but has a large communication overhead, and (C) 
a near-optimal mapping that simultaneously minimizes both load-imbalance and 
communication overhead. 

neighboring compartments are mapped to the same processor, then this information 
is available without any interprocessor communication and thus no communication 
overhead is incurred. 

Fig. 1 shows three different ways of mapping a 155 compartment neuron model 
onto a group of 4 processors. In each case the load-imbalance and communication 
overhead are calculated using the assumptions listed above and the computational 
efficiency is computed using eq. 4. The map in Fig. 1A minimizes the communication 
overhead of the' mapping by making a minimum number of cuts in the dendritic 
tree, but is rather inefficient because a significant load-imbalance remains even 
after optimizing the location of each cut. The map is Fig. 1B, on the other hand, 
minimizes the load-imbalance, by using a scattered mapping technique (Fox et al., 
1988), but is inefficient because of a large communication overhead. The map in 
Fig. 1C strikes a balance between load-imbalance and communication overhead that 
results in a high computational efficiency. Thus this particular mapping makes the 
best use of the available computing resources for this particular computational task. 
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Figure 2: Three classes of map topologies found in the brain (of the rat). (A) 
continuous map of tactile inputs in somatosensory cortex (B) patchy map of tactile 
inputs to cerebellar cortex and (C) scattered mapping of olfactory inputs to olfactory 
cortex as represented by the unstructured pattern of 2DG uptake in a single section 
of this cortex. 

3 MAPS IN THE BRAIN 

Since some parallel computer maps are clearly more efficient than others for partic­
ular problems, it seems natural to ask whether a similar relationship might hold for 
brain maps and neural computations. Namely, for a given computational task, does 
one particular brain map topology make more efficient use of the available neural 
computing resources than another? If so, does this impose a significant constraint 
on the evolution and development of brain map topologies? 

It turns out that there are striking similarities between the kinds of maps that 
arise on parallel computers and the types of maps that have been observed in 
the brain. In both cases, the map patterns can be broadly grouped into three 
categories: continuous maps, patchy maps, and scattered (non-topographic) maps. 
Fig. 2 shows examples of brain maps that fall into these categories. Fig. 2A shows 
an example of a smooth and continuous map representing the pattern of afferent 
tactile projections to the primary somatosensory cortex of a rat (Welker, 1971). 
The patchy map in Fig. 2B represents the spatial pattern of tactile projections to 
the granule cell layer of the rat cerebellar hemispheres (Shambes et aI., 1978; Bower 
and Woolston, 1983). Finally, Fig. 2C represents an extreme case in which a brain 
region shows no apparent topographic organization. This figure shows the pattern 
of metabolic activity in one section of the olfactory (piriform) cortex, as assayed by 
2-deoxyglucose (2DG) uptake, in response to the presentation of a particular odor 
(Sharp et al., 1977). As suggested by the uniform label in the cortex, no discernible 
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odor-specific patterns are found in this region of cortex. 

On parallel computers, maps in these different categories arise as optimal solutions 
to different classes of computations. Continuous maps are optimal for computations 
that are local in the problem space, patchy maps are optimal for computations that 
involve a mixture of local and non-local interactions, and scattered maps are opti­
mal or near-optimal for computations characterized by a high degree of interaction 
throughout the problem space, especially if the patterns of interaction are dynamic 
or cannot be easily predicted. Interestingly, it turns out that the intrinsic neu­
ral circuitry associated with different kinds of brain maps also reflects these same 
patterns of interaction. Brain regions with continuous maps, like somatosensory 
cortex, tend to have predominantly local circuitry; regions with patchy maps, like 
cerebellar cortex, tend to have a mixture of local and non-local circuitry; and regions 
with scattered maps, like olfactory cortex, tend to be characterized by wide-spread 
connectivity. 

The apparent correspondence between brain maps and computer maps raises the 
general question of whether or not there are correlates of load-imbalance and com­
munication overhead in the nervous system. In general, these factors are much more 
difficult to identify and quantify in the brain than on parallel computers. Parallel 
computer systems are, after all, human-engineered while the nervous system has 
evolved under a set of selection criteria and constraints that we know very little 
about. Furthermore, fundamental differences in the organization of digital comput­
ers and brains make it difficult to translate ideas from parallel computing directly 
into neural equivalents (c.f. Nelson et al., 1989). For example, it is far from clear 
what should be taken as the neural equivalent of a single processor. Depending on 
the level of analysis, it might be a localized region of a dendrite, an entire neuron, or 
an assembly of many neurons. Thus, one must consider multiple levels of processing 
in the nervous system when trying to draw analogies with parallel computers. 

First we will consider the issue of load-balancing in the brain. The map in Fig. 2A, 
while smooth and continuous, is obviously quite distorted. In particular, the regions 
representing the lips and whiskers are disproportionately large in comparison to 
the rest of the body. It turns out that similar map distortions arise on parallel 
computers as a result of load-balancing. If different regions of the problem space 
require more computation than other regions, load-balance is achieved by distorting 
the map until each processor ends up with an equal share of the workload (Fox et 
al., 1988). In brain maps, such distortions are most often explained by variations 
in the density of peripheral receptors. However, it has recently been shown in 
the monkey, that prolonged increased use of a particular finger is accompanied by 
an expansion of the corresponding region of the map in the somatosensory cortex 
(Merzenich, 1987). Presumably this is not a consequence of a change in peripheral 
receptor density, but instead reflects a use-dependent remapping of some tactile 
computation onto available cortical circuitry. 

Although such map reorganization phenomena are suggestive of load-balancing ef­
fects, we cannot push the analogy too far because we do not know what actually 
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corresponds to "computational load" in the brain. One possibility is that it is asso­
ciated with the metabolic load that arises in response to neural activity (Yarowsky 
and Ingvar, 1981). Since metabolic activity necessitates the delivery of an adequate 
supply of oxygen and glucose via a network of small capillaries, the efficient use of 
the capillary system might favor mappings that tend to avoid metabolic "hot spots" 
which would overload the delivery capabilities of the system. 

When discussing communication overhead in the brain, we also run into the prob­
lem of not knowing exactly what corresponds to "communication cost". On parallel 
computers, communication overhead is usually associated with the time-cost of ex­
changing information between processors. In the nervous system, the importance of 
such time-costs is probably quite dependent on the behavioral context of the com­
putation. There is evidence, for example, that some brain regions actually make use 
of transmission delays to process information (Carr and Konishi, 1988). However, 
there is another aspect of communication overhead that may be more generally 
applicable having to do with the space-costs of physically connecting processors to­
gether. In the design of modern parallel computers and in the design of individual 
computer processor chips, space-costs associated with interconnections pose a very 
serious constraint for the design engineer. In the nervous system, the extremely 
large numbers of potential connections combined with rather strict limitations on 
cranial capacity are likely to make space-costs a very important factor. 

4 CONCLUSIONS 

The view that computational efficiency is an important constraint on the organiza­
tion of brain maps provides a potentially useful new perspective for interpretting 
the structure of those maps. Although the available evidence is largely circum­
stantial, it seems likely that the topology of a brain map affects the efficiency with 
which neural resources are utilized. Furthermore, it seems reasonable to assume 
that network efficiency would impose a constraint on the evolution and develop­
ment of map topologies that would tend to favor maps that are near-optimal for 
the computational tasks being performed. The very substantial task before us, in 
the case of the nervous system, is to carry out further experiments to better un­
derstand the detailed relationships between brain maps, neural architectures and 
associated computations (Bower, 1990). 
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