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ABSTRACT 
A generic model of oscillating cortex, which assumes "minimal" 
coupling justified by known anatomy, is shown to function as an as­
sociative memory, using previously developed theory. The network 
has explicit excitatory neurons with local inhibitory interneuron 
feedback that forms a set of nonlinear oscillators coupled only by 
long range excitatofy connections. Using a local Hebb-like learning 
rule for primary and higher order synapses at the ends of the long 
range connections, the system learns to store the kinds of oscil­
lation amplitude patterns observed in olfactory and visual cortex. 
This rule is derived from a more general "projection algorithm" 
for recurrent analog networks, that analytically guarantees content 
addressable memory storage of continuous periodic sequences -
capacity: N /2 Fourier components for an N node network - no 
"spurious" attractors. 

1 Introduction 

This is a sketch of recent results stemming from work which is discussed completely 
in [1, 2, 3]. Patterns of 40 to 80 hz oscillation have been observed in the large 
scale activity of olfactory cortex [4] and visual neocortex [5], and shown to predict 
the olfactory and visual pattern recognition responses of a trained animal. It thus 
appears that cortical computation in general may occur by dynamical interaction of 
resonant modes, as has been thought to be the case in the olfactory system. Given 
the sensitivity of neurons to the location and arrival times of dendritic input, the 
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sucessive volleys of pulses that are generated by the collective oscillation of a neu­
ral net may be ideal for the formation and reliable longe range transmission of the 
collective activity of one cortical area to another. The oscillation can serve a macro­
scopic clocking function and entrain the relevant microscopic activity of disparate 
cortical regions into well defined phase coherent macroscopic collective states which 
overide uncorrelated microscopic activity. If this view is correct, then oscillatory 
network modules form the actual cortical substrate of the diverse sensory, motor, 
and cognitive operations now studied in static networks, and it must ultimately be 
shown how those functions can be accomplished with these dynamic networks. 

In particular, we are interested here in modeling category learning and object recog­
nition, after feature preprocessing. Equivalence classes of ratios of feature outputs 
in feature space must be established as prototype "objects" or categories that are 
invariant over endless sensory instances. Without categories, the world never re­
peats. This is the kind of function generally hypothesized for prepyriform cortex 
in the olfactory system[6}, or inferotemporal cortex in the visual system. It is a 
different oscillatory network function from the feature "binding", or clustering role 
that is hypothesized for "phase labels" in primary visual cortex [5], or from the 
"decision states" hypothesized for the olfactory bulb by Li and Hopfield. In these 
preprocessing systems, there is no modification of connections, and no learning of 
particular perceptual objects. For category learning, full adaptive cross coupling 
is required so that all possible input feature vectors may be potential attractors. 
This is the kind of anatomical structure that characterizes prepyriform and infer­
otemporal cortex. The columns there are less structured, and the associational 
fiber system is more prominent than in primary cortex. Man shares this same high 
level "association" cortex structure with cats and rats. Phylogenetic ally, it is the 
preprocessing structures of primary cortex that have grown and evolved to give us 
our expanded capabilities. While the bulk of our pattern recognition power may be 
contributed by the clever feature preprocessing that has developed, the object clas­
sification system seems the most likely locus of the learning changes that underlie 
our daily conceptual evolution. That is the phenomenon of ultimate interest in this 
work. 

2 Minimal Model of Oscillating Cortex 

Analog state variables, recurrence, oscillation, and bifurcation are hypothesized 
to be essential features of cortical networks which we explore in this approach. 
Explicit modeling of known excitatory and inhibitory neurons, and use of only 
known long range connections is also a basic requirement to have a biologically 
feasible network architecture. We analyse a "minimal" model that is intended to 
assume the least coupling that is justified by known anatomy, and use simulations 
and analytic results proved in [1, 2] to argue that an oscillatory associative memory 
function can be realized in such a system. The network is meant only as a cartoon 
of the real biology, which is designed to reveal the general mathematical principles 
and mechanisms by which the actual system might function. Such principles can 
then be observed or applied in other contexts as well. 
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Long range excitatory to excitatory connections are well known as "associational" 
connections in olfactory cortex [6] , and cortic~cortico connections in neocortex. 
Since our units are neural populations, we know that some density of full cross­
coupling exists in the system [6] , and our weights are the average synaptic strengths 
of these connections. There is little problem at the population level with coupling 
symmetry in these average connection strenghts emerging from the operation of an 
outer product learning rule on initially random connections. When the network 
units are neuron pools, analog state variables arise naturally as continuous local 
pulse densities and cell voltage averages. Smooth sigmoidal population input-output 
functions, whose slope increases with arousal of the animal, have been measured in 
the olfactory system [4] . Local inhibitory "interneurons" are a ubiquitous feature 
of the anatomy of cortex throughout the brain [5] . It is unlikely that they make 
long range connections (> 1 mm) by themselves. These connections, and even the 
debated interconnections between them, are therefore left out of a minimal model. 
The resUlting network is actually a fair caricature of the well studied circuitry of 
olfactory (prepyriform) cortex. This is thought to be one of the clearest cases of a 
real biological network with associative memory function [6]. Although neocortex 
is far more complicated, it may roughly be viewed as two olfactory cortices stacked 
on top of each other. We expect that analysis of this system will lend insight into 
mechanisms of associative memory there as well. In [3] we show that this model 
is capable of storing complicated multifrequency spati~temporal trajectories, and 
argue that it may serve as a model of memory for sequences of actions in motor 
cortex. 

For an N dimensional system, the "minimal" coupling structure is described math­
ematically by the matrix 

T=[~ -hI] 
o ' 

where W is the N /2 x N /2 matrix of excitatory interconnections, and gI and hI are 
N /2 x N /2 identity matrices multiplied by the positive scalars g, and h. These give 
the strength of coupling around local inhibitory feedback loops. A state vector is 
composed of local average cell voltages for N /2 excitatory neuron populations x and 
N/2 inhibitory neuron populations y (hereafter notated as x, Y E RN/2). Standard 
network equations with this coupling might be, in component form, 

Yi 

N/2 

-TXj - hU(Yi) + L WijU(Xj) + hi 
j=l 

-TYi + gU(Xi), 

(1) 

(2) 

where u(x) = tanh(x) or some other sigmoidal function symmetric about O. In­
tuitively, since the inhibitory units Yi receive no direct input and give no direct 
output, they act as hidden units that create oscillation for the amplitude patterns 
stored in the excitatory cross-connections W. This may be viewed as a simple gen­
eralization of the analog "Hopfield" network architecture to store periodic instead 
of static attractors. 



Associative Memory in a Simple Model of Oscillating Cortex 71 

If we expand this network to third order in a Taylors series about the origin, we get 
a network that looks something like, 

NI2 NI2 

-TXi - hYi + L WijXj - L WijklXjXkXl + bi, (3) 
j=l jkl=l 

Yi (4) 

where 0"(0) = 1, and ~O''''(O)( < 0) is absorbed into Wijkl. A sigmoid symmetric 
about zero has odd symmetry, and the even order terms of the expansion vanish, 
leaving the cubic terms as the only nonlinearity. The actual expansion of the ex­
citatory sigmoids in (1,2) (in this coordinate system) will only give cubic terms of 
the form Ef~~ WijXl- The competitive (negative) cubic terms of (3) therefore con­
stitute a more general and directly programmable nonlinearity that is independent 
of the linear terms. They serve to create multiple periodic at tractors by causing 
the oscillatory modes of the linear term to compete, much as the sigmoidal non­
linearity does for static modes in a Hopfield network. Intuitively, these terms may 
be thought of as sculpting the maxima of a "saturation" landscape into which the 
stored linear modes with positive eigenvalues expand, and positioning them to lie 
in the directions specified by the eigenvectors of these modes to make them stable. 
A precise definition of this landscape is given by a strict Liapunov function in a 
special polar coordinate system[l, 3]. Since we have had no success storing multiple 
oscillatory at tractors in the sigmoid net (1,2) by any learning rule, we are driven 
to take this very effective higher order net seriously as a biological model. From a 
physiological point of view, (3,4) may be considered a model of a biological network 
which is operating in the linear region of the known axonal sigmoid nonlinearities[4], 
and contains instead sigma-pi units or higher order synaptic nonlinearities. 

2.1 Biological justification of the higher order synapses 

Using the long range excitatory connections available, the higher order synaptic 
weights Wijkl can conceivably be realized locally in the ax~dendritic interconnec­
tion plexus known as "neuropil". This a feltwork of tiny fibers so dense that it's 
exact circuitry is impossible to investigate with present experimental techniques. 
Single axons are known to bifurcate into multiple branches that contribute separate 
synapses to the dendrites of target cells. It is also well known that neighboring 
synapses on a dendrite can interact in a nonlinear fashion that has been modeled 
as higher order synaptic terms by some researchers. It has been suggested that the 
neuropil may be dense enough to allow the crossing of every possible combination of 
jk/ axons in the vicinity of some dendritic branch of at least one neuron in neuron 
pool i (B. Mel). Trophic factors stimulated by the coactivation of the axons and the 
dendrite could cause these axons to form of a "cluster" of nearby synapses on the 
dendrite to realize a jk/ product synapse. The required higher order terms could 
thus be created by a Hebb-like process. The use of competitive cubic cross terms 
may therefore be viewed physiologically as the use of this complicated nonlinear 
synaptic/dendritic processing, as the decision making nonlinearity in the system, as 
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opposed to the usual sigmoidal axonal nonlinearity. There are more weights in the 
cubic synaptic terms, and the network nonlinearity can be programmed in detail. 

3 Analysis 

The real eigenvectors of W give the magnitudes of the complex eigenvectors of T. 

Theorem 3.1 If a is a real eigenvalue of the N/2 x N/2 matrix W, with corre­
sponding eigenvector x, then the N x N matrix 

has a pair of complex conjugate eigenvalues ~1,2 = 1/2(a±.ja2 - 4hg) = 1/2(a±iw), 
for a 2 < 4hg , where w = .j4hg - a 2. The corresponding complex conjugate pair of 
eigenvectors are 

[ ~ ] ± i [cr!w ]. 
2h X 2h X 

The proof of this theorem is given in [2]. To more clearly see the amplitude and 
phase patterns, we can convert to a magnitUde and phase representation~/ 2 Izl~i9, 
where IZj 1 = .j~t + ~t, and OJ = arctan(~zJ/(~zJ. We get, IZXi 1 = xi + xi = 
v'2lxil , and 

1 1 2(a2 + w2) ~ -_ /4h9 1 .1__ f2i1 .1 
ZYi = 4h2 XI 2h2 XI V h XI • 

Now Ox = arctan 1 = 7r/4, Oy = arctan ~+~. Dividing out the common v'2 factor in 
the magnitudes, we get eigenvectors that clearly display the amplitude patterns of 
interest. 

Because of the restricted coupling, the oscillations possible in this network are 
standing waves, since the phase Ox, Oy is constant for each kind of neuron X and y, 
and differs only between them. This is basically what is observed in the olfactory 
bulb (primary olfactory cortex) and prepyriform cortex. The phase of inhibitory 
components Oy in the bulb lags the phase of the excitatory components Ox by ap­
proximately 90 degrees. It is easy to choose a and w in this model to get phase lags 
of nearly 90 degrees. 

3.1 Learning by the projection algorithm 

From the theory detailed in [1], we can program any linearly independent set of 
eigenvalues and eigenvectors into W by the "projection" operation W = BDB-l, 
where B has the desired eigenvectors as columns, and D is a diagonal matrix of 
the desired eigenvalues. Because the complex eigenvectors of T follow from these 
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learned for W, we can form a projection matrix P with those eigenvectors of T as 
columns. Forming also a matrix J of the complex eigenvalues of T in blocks along the 
diagonal, we can project directly to get T. If general cubic terms Iij'" XjX"X" also 
given by a specific projection operation, are added to network equations with linear 
terms Ii; x;, the complex modes (eigenvectors) of the linearization are analytically 
guaranteed by the projection theorem[l] to characterize the periodic attractors of 
the network vector field. Chosen "normal form" coeficients Amn [1] are projected to 
get the higher order synaptic weights Ii;", for these general cubic terms. Together, 
these operations constitute the "normal form projection algorithm": 

N 

T=PJP- l , Ii;",= L PimAmnP;;;]P;;"lp;;/. 
m,n=l 

Either member of the pair of complex eigenvectors shown above will suffice as the 
eigenvector that is entered in the P matrix for the projection operation. For real 
and imaginary component columns in P, 

p_ x [ Ix· I cos o· 
- Jflx·1 cosO; 

Ix·1 sin 0; 
Jflx·1 sin 0; 

... J ... • - [ Ix·lei9!+iw·t J 
=> X (t) - Jflx.lei9~+iw't , 

where x· (t) is an expression for the periodic attractor established for pattern s 
when this P matrix is used in the projection algorithm. 

The general cubic terms Tij'" x;x"x" however, require use of unlikely long range 
inhibitory connections. Simulations of two and four oscillator networks thus far 
(N=4 and N=8), reveal that use of the higher order terms for only the anatomically 
justified long range excitatory connections Wij"', as in the cubic net (3,4), is effective 
in storing randomly chosen sets of desired patterns. The behavior of this network 
is very close to the theoretical ideal guaranteed above for a network with general 
higher order terms. There is no alteration of stored oscillatory patterns when the 
reduced coupling is used. 

We have at least general analytic justification for this. "Normal form" theory[l, 3] 
guarantees that many other choices of weights will do the same job as the those found 
by the projection operation, but does not in general say how to find them. Latest 
work shows that a perturbation theory calculation of the normal form coefficients 
for general high dimensional cubic nets is tractable and in principle permits the 
removal of all but N2 of the N4 higher order weights normally produced by the 
projection algorithm. We have already incorporated this in an improved learning 
rule (non-Hebbian thus far) which requires even fewer of the excitatory higher order 
weights «N)2 instead of the (N /2)4 used in (3», and are exploring the size of the 
"neighborhood" of state space about the origin in which the rule is effective. This 
should lead as well to a rigorous proof of the performance of these networks. 

3.2 Learning by local Hebb rules 

We show further in [2, 1] that for orthonormal static patterns x·, the projection 
operation for the W matrix reduces to an outer product, or "Hebb" rule, and the 
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projection for the higher order weights becomes a multiple outer product rule: 

N/2 N/2 

Wi; = La'xix} , Wi;1:l = c Oij01:l - d Lxi xjXkx; . (5) 
,=1 .=1 

The first rule is guaranteed to establish desired patterns x' as eigenvectors of the 
matrix W with corresponding eigenvalues a'. The second rule, with c > d, gives 
higher order weights for the cubic terms in (3) that ensure the patterns defined by 
these eigenvectors will appear as at tractors in the network vectorfield. The outer 
product is a local synapse rule for synapse ij, that allows additive and incremental 
learning. The system can be truly self-organizing because the net can modify itself 
based on its own activity. The rank of the coupling matrix Wand T grows as 
more memories are learned by the Hebb rule, and the unused capacity appears as 
a degenerate subspace with all zero eigenvalues. The flow is thus directed toward 
regions of the state space where patterns are stored. 

In the minimal net, real eigenvectors learned for Ware converted by the network 
structure to standing wave oscillations (constant phase) with the absolute value 
of those eigenvectors as amplitudes. From the mathematical perspective, there are 
(N /2)! eigenvectors with different permutations of the signs of the same components, 
which lead to the same positive amplitude vector. This means that nonorthogonal 
amplitude patterns may be stored by the Hebb rule on the excitatory connections, 
since there may be many ways to find a perfectly orthonormal set of eigenvectors for 
W that stores a given set of nonorthogonal amplitude vectors. Given the complexity 
of dendritic processing discussed previously, it is not impossible that there is some 
distribution of the signs of the final effect of synapses from excitatory neurons that 
would allow a biological system to make use of this mathematical degree of freedom. 

For different input objects, feature preprocessing in primary and secondary sensory 
cortex may be expected to orthogonalize outputs to the object recognition systems 
modeled here. When the rules above are used for nonorthogonal patterns, the 
eigenvectors of Wand T are no longer given directly by the Hebb rule, and we 
expect that the kind of performance found in Hopfield networks for nonorthogonal 
memories will obtain, with reduced capacity and automatic clustering of similar 
exemplars. Investigation of this unsupervised induction of categories from training 
examples will be the subject of future work[3). 

3.3 Architectural Variations - Olfactory Bulb Model 

Another biologically interesting architecture which can store these kinds of patterns 
is one with associational excitatory to inhibitory cross-coupling. This may be a 
more plausible model of the olfactory bulb (primary olfactory cortex) than the one 
above. Experimental work of Freeman suggests an associative memory function for 
this cortex as well[4). The evidence for long range excitatory to excitatory coupling 
in the olfactory bulb is much weaker than that for the prepyriform cortex. Long 
range excitatory tracts connecting even the two halves of the bulb are known, but 
anatomical data thus far show these axons entering only the inhibitory granuel cell 
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layers. 

T = [fJ., -~1] , A1,2 = 1/2(g ± y'g2 - 4ag) = 1/2(g ± iw), 

for g2 < 4ag , where w = y'4ag - g2. The eigenvectors are, 

[ x] . [ x ] [ Ix'i cos O! 
g+w ±. g-w ,::} P = I?£I'I {}' 
2h x 2h X V 1l x cos f/ 

in polar form, where O~ = 7r /4, and 0; = arctan ~+~ . 

Ix' I sin O! 
y'flx'i sin 0; 

.. . ] , 

... 

If we add inhibitory population self-feedback - f to either model, this additional 
term appears subtracted from a or 9 in the real part of the complex eigenvalues, 
and added to them in all other expressions[2]. Further extensions of this line of 
analysis will consider lateral inhibitory fan out of the inhibitory - excitatory feedback 
connections. The -hI block of the coupling matrix T becomes a banded matrix. 
Similarly, the gl and - fI may be banded, or both full excitatory to excitatory 
Wand full excitatory to inhibitory V coupling blocks may be considered. We 
conjecture that the phase restrictions of the minimal model will be relaxed with 
these further degrees of freedom available, so that traveling waves may exist. 
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