
Neural Network Visualization 465 

NEURAL NETWORK VISUALIZATION 

Jakub Wejchert 
Gerald Tesauro 

IB M Research 
T.J. Watson Research 

Center 
Yorktown Heights 

NY 10598 

ABSTRACT 

We have developed graphics to visualize static and dynamic infor­
mation in layered neural network learning systems. Emphasis was 
placed on creating new visuals that make use of spatial arrange­
ments, size information, animation and color. We applied these 
tools to the study of back-propagation learning of simple Boolean 
predicates, and have obtained new insights into the dynamics of 
the learning process. 

1 INTRODUCTION 

Although neural network learning systems are being widely investigated by many 
researchers via computer simulations, the graphical display of information in these 
simulations has received relatively little attention. In other fields such as fluid 
dynamics and chaos theory, the development of "scientific visualization" techniques 
(1,3) have proven to be a tremendously useful aid to research, development, and 
education. Similar benefits should result from the application of these techniques 
to neural networks research. 

In this article, several visualization methods are introduced to investigate learning 
in neural networks which use the back-propagation algorithm. A multi-window 



466 Wejchert and Tesauro 

environment is used that allows different aspects of the simulation to be displayed 
simultaneously in each window. 

As an application, the toolkit is used to study small networks learning Boolean 
functions. The animations are used to observe the emerging structure of connection 
strengths, to study the temporal behaviour, and to understand the relationships and 
effects of parameters. The simulations and graphics can run at real-time speeds. 

2 VISUAL REPRESENTATIONS 

First, we introduce our techniques for representing both the instantaneous dynamics 
of the learning process, and the full temporal trajectory of the network during the 
course of one or more learning runs. 

2.1 The Bond Diagram 

In the first of these diagrams, the geometrical structure of a connected network is 
used as a basis for the representation. As it is of interest to try to see how the 
internal configuration of weights relates to the problem the network is learning, it is 
clearly worthwile to have a graphical representation that explicitly includes weight 
information integrated with network topology. This differs from "Hinton diagrams" 
(2), in which data may only be indirectly related to the network structure. In our 
representation nodes are represented by circles, the area of which are proportional 
to the threshold values. Triangles or lines are used to represent the weights or their 
rate of change. The triangles or line segments emanate from the nodes and point 
toward the connecting nodes. Their lengths indicate the magnitude of the weight 
or weight derivative. We call this the "bond diagram". 

In this diagram, one can look at any node and clearly see the magnitude of the 
weights feeding into and out of it. Also, a sense of direction is built into the picture 
since the bonds point to the node that they are connected to. Further, the collection 
of weights form distinct patterns that can be easily perceived, so that one can also 
infer global information from the overall patterns formed. 

2.2 The Trajectory Diagram 

A further limitation of Hinton diagrams is that they provide a relatively poor rep­
resentation of dynamic information. Therefore, to understand more about the dy­
namics of learning we introduce another visual tool that gives a two-dimensional 
projection of the weight space of the network. This represents the learning pro­
cess as a trajectory in a reduced dimensional space. By representing the value of 
the error function as the color of the point in weight space, one obtains a sense of 
the contours of the error hypersurface, and the dynamics of the gradient-descent 
evolution on this hypersurface. We call this the "trajectory diagram". 

The scheme is based on the premise that the human user has a good visual notion 
of vector addition. To represent an n-dimensional point, its axial components are 
defined as vectors and then are plotted radially in the plane; the vector sum of 
these is then calculated to yield the point representing the n-dimensional position. 



Neural Network Visualization 467 

It is obvious that for n > 2 the resultant point is not unique, however, the method 
does allow one to infer information about families of similar trajectories, make 
comparisons between trajectories and notice important deviations in behaviour. 

2.3 Implementation 

The graphics software was written in C using X-Windows v. 11. The C code was 
interfaced to a FORTRAN neural network simulator. The whole package ran under 
UNIX, on an RT workstation. Using the portability of X- Windows the graphics 
could be run remotely on different machines using a local area network. Excecution 
time was slow for real-time interaction except for very small networks (typically 
up 30 weights). For larger networks, the Stellar graphics workstation was used, 
whereby the simulator code could be vectorized and parallelized. 

3 APPLICATION EXAMPLES 

With the graphics we investigated networks learning Boolean functions: binary 
input vectors were presented to the network through the input nodes, and the 
teacher signal was set to either 1 or O. Here, we show networks learning majority, and 
symmetry functions. The output of the majority function is 1 only if more than half 
of the input nodes are on; simple symmetry distiguishes between input vectors that 
are symmetric or anti-symmetric about a central axis; general symmetry identifies 
perfectly symmetric patterns out of all other permutations. Using the graphics, 
one can watch how solutions to a particular problem are obtained, how different 
parameters affect these solutions, and observe stages at which learning decisions are 
made. 

At the start of the simulations the weights are set to small random values. During 
learning, many example patterns of vectors are presented to the input of the network 
and weights are adjusted accordingly. Initially the rate of change of weights is 
small, later as the simulation gets under way the weights change rapidly, until small 
changes are made as the system moves toward the final solution. Distinct patterns 
of triangles show the configuration of weights in their final form. 

3.1 The Majority Function 

Figure 1 shows a bond diagram for a network that has learnt the majority function. 
During the run, many input patterns were presented to the network during which 
time the weights were changed. The weights evolve from small random values 
through to an almost uniform set corresponding to the solution of the problem. 
Towards the end, a large output node is displayed and the magnitudes of all the 
weights are roughly uniform, indicating that a large bias (or threshold) is required 
to offset the sum of the weights. Majority is quite a simple problem for the network 
to learn; more complicated functions require hidden units. 

3.2 The Simple Symmetry Function 

In this case only symmetric or perfectly anti-symmetric patterns are presented and 
the network is taught to distinguish between these. In solving this problem, the 



468 Wejchert and Tesauro 

Figure 1: A near-final configuration of weights for the majority function. All the 
weights are positive. The disc corresponds to the threshold of the output unit. 



Neural Network Visualization 469 

network chose (correctly) that it needs only two units to make the decision whether 
the input is totally symmetric or totally anti-symmetric. (In fact, any symmetrically 
separated input pair will work.) It was found that the simple pattern created by the 
bond representation carries over into the more general symmetry function, where the 
network must identify perfectly symmetric inputs from all the other permutations. 

3.3 The General Symmetry Function 

Here, the network is required to detect symmtery out of all the possible input 
patterns. As can be seen from the bond diagram (figure 2) the network has chosen 
a hierarchical structure of weights to solve the problem, using the basic pattern of 
weights of simple symmtery. The major decision is made on the outer pair and 
additional decisions are made on the remaining pairs with decreasing strength. As 
before, the choice of pairs in the hierarchy depends on the initial random weights. 
By watching the animations, we could make some observations about the stages of 
learning. We found that the early behavior was the most critical as it was at this 
stage that the signs of the weights feeding to the hidden units were determined. At 
the later stages the relative magnitudes of the weights were adapted. 

3.4 The Visualization Environment 

Figure 3 shows the visualization environment with most of the windows active. The 
upper window shows the total error, and the lower window the state of the output 
unit. Typically, the error initially stays high then decreases rapidly and then levels 
off to zero as final adjustments are made to the weights. Spikes in this curve are 
due to the method of presenting patterns at random. The state of the output unit 
initially oscillates and then bifurcates into the two requires output states. 

The two extra windows on the right show the trajectory diagrams for the two 
hidden units. These diagrams are generalizations of phase diagrams: components 
of a point in a high dimensional space are plotted radially in the plane and treated 
as vectors whose sum yields a point in the two-dimensional representation. We have 
found these diagrams useful in observing the trajectories of the two hidden units, 
in which case they are representations of paths in a six-dimensional weight space. 
In cases where the network does converge to a correct solution, the paths of the two 
hidden units either try to match each other (in which case the configurations of the 
units were identical) or move in opposite directions (in which case the units were 
opposites ). 

By contrast, for learning runs which do not converge to global optima we found 
that usually one of the hidden units followed a normal trajectory whereas the other 
unit was not able to achieve the appropriate match or anti-match. This is because 
the signs of the weights to the second hidden unit were not correct and the learning 
algorithm could not make the necessary adjustments. At a certain point early in 
learning the unit would travel off on a completely different trajectory. These obser­
vations suggest a heuristic that could improve learning by setting initial trajectories 
in the "correct" directions. 



470 \Vejchert and Tesauro 

Figure 2: The bond diagram for a network that has learnt the symmetry function. 
There are six input units, two hidden and one output. Weights are shown by bonds 
emantating from nodes. In the graphics positive and negative weights are colored 
red and blue respectively. In this grey-scale photo the negative weights are marked 
with diagonal lines to distiguish them from positive weights. 



Neural Network Visualization 471 

Figure 3: An example of the graphics with most of the windows active; the com­
mand line appears on the bottom. The central window shows the bond diagram 
of the General Symmetry function. The upp er left window shows the total error, 
and the lower left window the state of the output unit. The two windows on the 
right show the trajectory diagrams for the two hidden units. The "spokes" in this 
diagram correspond to the magnitude of the weights. The trace of dots are the 
paths of the two units in weight space. 



472 Wejchert and Tesauro 

In general, the trajectory diagram has similar uses to a conventional phase plot: it 
can distinguish between different regions of configuration space; it can be used to 
detect critical stages of the dynamics of a system; and it gives a "trace" of its time 
evolution. 

4 CONCLUSION 

A set of computer graphics visualization programs have been designed and interfaced 
to a back-propagation simulator. Some new visualization tools were introduced such 
as the bond and trajectory diagrams. These and other visual tools were integrated 
into an interactive multi-window environment. 

During the course of the work it was found that the graphics was useful in a number 
of ways: in giving a clearer picture of the internal representation of weights, the 
effects of parameters, the detection of errors in the code, and pointing out aspects 
of the simulation that had not been expected beforehand. Also, insight was gained 
into principles of designing graphics for scientific processes. 

It would be of interest to extend our visualization techniques to include large net­
works with thousands of nodes and tens of thousands of weights. We are currently 
examining a number of alternative techniques which are more appropriate for large 
data-set regimes. 

Acknow ledgements 

We wish to thank Scott Kirkpatrick for help and encouragment during the project. 
We also thank members of the visualization lab and the animation lab for use of 
their resources. 

References 

(1) McCormick B H, DeFanti T A Brown M D (Eds), "Visualization in Scientific 
Computing" Computer Graphics 21, 6, November (1987). See also "Visualization 
in Scientific Computing-A Synopsis", IEEE Computer Graphics and Applications, 
July (1987). 

(2) Rumelhart D E, McClelland J L, "Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition. Volume 1" MIT Press, Cambridge, MA (1986). 

(3) Tufte E R, "The Visual Display of Quantitative Information", Graphic Press, 
Chesire, CT (1983). 



PART VI: 
NEW LEARNING ALGORITHMS 


