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ABSTRACT

In the mammalian visual cortex, orientation-selective ‘simple cells’
which detect straight lines may be adapted to detect curved lines
instead. We test a biologically plausible, Hebbian, single-neuron
model, which learns oriented receptive fields upon exposure to un-
structured (noise) input and maintains orientation selectivity upon
exposure to edges or bars of all orientations and positions. This
model can also learn arc-shaped receptive fields upon exposure
to an environment of only circular rings. Thus, new experiments
which try to induce an abnormal (curved) receptive field may pro-
vide insight into the plasticity of simple cells. The model suggests
that exposing cells to only a single spatial frequency may induce
more striking spatial frequency and orientation dependent effects
than heretofore observed.

1 Introduction

Although most mathematical theories of cortical function assume plasticity of indi-
vidual cells, there is a strong debate in the biological community between “instruc-
tional” (plastic) and “selectional” (hard-wired) models of orientation-selective cells
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(which we will call “simple cells”) in striate visual cortex. Thus, a theory of simple
cell learning which can make experimental predictions is desirable.

1.1 Overview of Plasticity Experiments

The most illuminating experiments addressing the plasticity of visual cortex are
collectively called “stripe-rearing.” Such experiments artificially restrict the visual
environment of animals (usually kittens) to a few straight, dark, parallel lines (e.g. 3
vertical stripes.) In the many cases studied, examination of the visual cortex reveals
that animals which viewed such limited visual environments posses more simple cells
tuned to the exposed orientation than tuned to other orientations. (For comparison,
the simple cells of animals with normal visual experience are equally distributed
among all orientations.) But the observed changes in cell populations can be equally
well explained by “instructional” and “selectional” hypotheses (Stryker et al.1978).

Although many variations on stripe-rearing have been tried (different orientations
for each eye, one eye closed, etc.), only environments spanning a very restricted
subset (straight lines) of the natural environment have been studied (Hirsch et al
1983, Blakemore et al. 1978, and see references therein). Conclusions regarding
plasticity have been based on changes in populations of simple cells, rather than on
changes in individual cells. Statistical arguments based on changes in large groups
of cells are questionable, since the well-documented lateral interactions between
cortical neurons may constrain population ratios, e.g. limit the fraction of neurons
responding to a single orientation.

1.2 New Experimental Approach

We propose several experiments to alter the receptive field (RF) of a single cell (see
also Fregnac et al. 1988). How might that be done? The RF of a simple cell has only
one characteristic spatial frequency (Jones & Palmer 1987 and ref’s therein). To try
altering the shape of that RF, it is necessary to present a pattern which is different
from a simple bar or edge, but is still sufficiently similar in spatial frequency to
activate the same population of retinal cells that detect the bar. An arc-shaped RF
satisfies this condition; to generate an arc-shaped RF, an environment of circular
rings (rather than bent bars) is necesary, since complete circles lack sharp end-effects
which could overexcite spatial opponent cells and thus disturb learning.

This paper proposes a very simple Hebbian model of a neuron, and examines the
resulting plasticity upon exposure to edge, bar, and arc-shaped stimuli.

2 Mathematical Model

The model applies a simple Hebbian learning rule to an array of about 400 synapses.
There are several important features of this model. One is that the stimulus is a
visual environment of structured input (bars, edges, or circles) rather than only
stochastic (noise) input, as was used in the previous Hebb-learning models of Linsker
(1986) and Kammen & Yuille (1988). (For a review of Hebbian learning and neural
development see Kammen and Yuille 1990). Second, the input is Laplace filtered
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to simulate the retinal processing stage; and third, all connections are rectified to
be excitatory, like direct afferent input to simple cells.

2.1 Overview

We model the neuron as an array of non-negative synapses, distributed within a
circular region. To let the neuron “see” a single pattern in the visual environment
(see Figure 1, end of text), the array is overlaid on a much larger positive array (the
filtered image), which represents the environment. Each synapse value is multiplied
by its corresponding input pixel, and the sum of these products forms the neuron’s
“output.” If the output is above a threshold value, each synapse is changed slightly
to make it more like its corresponding pixel (the synapse is increased for a positive
pixel, and decreased for a zero pixel.) If the output is low, nothing is changed. This
process implements the correlation-based (“Hebbian”) learning rule for synapse
modification. To ensure maturation, we presented roughly one million training
images to each neuron. Because there are many filtered images, only one is chosen
at random for each iteration, and the neuron is overlapped at some random spatial
offset.

2.2 Input Filtering Process

The visual environment is a collection of N black-on-white pictures of a single shape
(such as straight lines), at fixed contrast. The environment seen by the neuron is
a set of N filtered images, whose non-negative elements are produced from the
pictures by a rectified, Laplace-like, center-surround process similar to that of the
mammalian retina (Van Essen & Anderson 1988). To determine the RF of a mature
array of synapses, the combined efficacy of all synapses is calculated for each pixel,
and displayed as a grey scale (white = excitatory, black = inhibitory). See Figure
2, at end of text, for several examples of mature RF’s.

2.3 Plasticity Under Visual Stimulation

The neuron’s input synapses cover a circle much smaller than the filtered image. A
single exposure to the environment overlaps the synapse array at a random position
on the input image (chosen randomly from the training set). This overlap pairs
each synapse with an input from a filter whose center has like polarity (on or off),
so that each synapse represents a definite polarity of retinal cell.

A typical run involves perhaps 10® exposures. There is no time variable, so that
motion and temporal correlations between images are entirely absent. During each
exposure a Hebb rule (section 2.4) changes synaptic weights based on current cell
output and input values. When the neuron is exposed to filtered stochastic input
“noise-rearing” ), synapses are intitialized randomly. When the neuron is exposed
to structured environments, synapses are initialized with the orderly synapse arrays
which result from noise-rearing. (As in animals, synapses may evolve in response to
filtered random input before they are exposed to the external environment.)
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2.4 A Choice of Hebb Rules for Learning Plasticity

Hebb postulated (1949) that neurons modify their synapses according to the fol-
lowing rule: the synapse will increase in efficacy if the post-synaptic and presy-
naptic excitations are coincident. There are many different formulae which satisfy
Hebb’s criterion; this model explores some simple representative ones. During each
exposure to input, the synapses are adjusted according to the following type of
hard-limited Hebb rule:

out = Zsyn;xin,— (1)
i

And if (out — thresh) > 0 :

Asyn; = (out — thresh)” x in; x growth (2)
if in; > 0 and syn; < 10

= —(out — thresh)"™ x decay (3)
if in; = 0 and syn; > 0.5

= 0 otherwise (4)

The constants growth and decay are positive, and the exponent n is at least one.
Both types of threshold depend on the neuron’s recent output history: either the
average of the previous 200 outputs, or one half the maximum previous output
(decaying by .9995 each exposure until a new ©F= exceeds it). This Hebb Rule
assumes that the cell can detect the current input value before its modification by
a synapse.

2.5 Choice of Parameters

The constants growth and decay are not sensitive parameters. We found that only
three parameter regimes exist: all synapses saturate at maximum, all saturate at
minimum, or some at maximum and some at minimum. Only the latter regime is
of interest, because only it contains structured RF’s.

Most simulations used n = 1,2,3 with both thresholds. The threshold based on
maximum output enhances learning selectivity, while the averaged output version
can be derived from a principle of “excess information” (See Appendix). Because
simple cell RF’s have approximately Gaussian envelopes (Jones & Palmer 1987),
some simulations were done with Gaussian envelopes modulating the maximum
synapse values. That modification made no difference in the results observed.

3 Results and Discussion

The production of oriented RFs during exposure to unstructured input confirms
previous results by Linsker (1986) and Yuille et al. (1989), but with some im-
portant differences. Like those models, the neurons simulated here learn oriented
stripe-patterns as a kind of lowest-energy configuration under exposure to spatially















