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ABSTRACT 

In the mammalian visual cortex, orientation-selective 'simple cells' 
which detect straight lines may be adapted to detect curved lines 
instead. We test a biologically plausible, Hebbian, single-neuron 
model, which learns oriented receptive fields upon exposure to un­
structured (noise) input and maintains orientation selectivity upon 
exposure to edges or bars of all orientations and positions. This 
model can also learn arc-shaped receptive fields upon exposure 
to an environment of only circular rings. Thus, new experiments 
which try to induce an abnormal (curved) receptive field may pro­
vide insight into the plasticity of simple cells. The model suggests 
that exposing cells to only a single spatial frequency may induce 
more striking spatial frequency and orientation dependent effects 
than heretofore observed. 

1 Introduction 

Although most mathematical theories of cortical function assume plasticity of indi­
vidual cells, there is a strong debate in the biological community between "instruc­
tional" (plastic) and "selectional" (hard-wired) models of orientation-selective cells 
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(which we will call "simple cells") in striate visual cortex. Thus, a theory of simple 
cell learning which can make experimental predictions is desirable. 

1.1 Overview of Plasticity Experiments 

The most illuminating experiments addressing the plasticity of visual cortex are 
collectively called "stripe-rearing." Such experiments artificially restrict the visual 
environment of animals (usually kittens) toa few straight, dark, parallel lines (e.g. 3 
vertical stripes.) In the many cases studied, examination of the visual cortex reveals 
that animals which viewed such limited visual environments posses more simple cells 
tuned to the exposed orientation than tuned to other orientations. (For comparison, 
the simple cells of animals with normal visual experience are equally distributed 
among all orientations.) But the observed changes in cell populations can be equally 
well explained by "instructional" and "selectional" hypotheses (Stryker et al.1978). 

Although many variations on stripe-rearing have been tried (different orientations 
for each eye, one eye closed, etc.), only environments spanning a very restricted 
subset (straight lines) of the natural environment have been studied (Hirsch et al. 
1983, Blakemore et al. 1978, and see references therein). Conclusions regarding 
plasticity have been based on changes in populations of simple cells, rather than on 
changes in individual cells. Statistical arguments based on changes in large groups 
of cells are questionable, since the well-documented lateral interactions between 
cortical neurons may constrain population ratios, e.g. limit the fraction of neurons 
responding to a single orientation. 

1.2 New Experimental Approach 

We propose several experiments to alter the receptive field (RF) of a single cell (see 
also Fregnac et al. 1988). How might that be done? The RF ofa simple cell has only 
one characteristic spatial frequency (Jones & Palmer 1987 and ref's therein). To try 
altering the shape of that RF, it is necessary to present a pattern which is different 
from a simple bar or edge, but is still sufficiently similar in spatial frequency to 
activate the same population of retinal cells that detect the bar. An arc-shaped RF 
satisfies this condition; to generate an arc-shaped RF, an environment of circular 
rings (rather than bent bars) is necesary, since complete circles lack sharp end-effects 
which could overexcite spatial opponent cells and thus disturb learning. 

This paper proposes a very simple Hebbian model of a neuron, and examines the 
resulting plasticity upon exposure to edge, bar, and arc-shaped stimuli. 

2 Mathematical Model 

The model applies a simple Hebbian learning rule to an array of about 400 synapses. 
There are several important features of this model. One is that the stimulus is a 
visual environment of structured input (bars, edges, or circles) rather than only 
stochastic (noise) input, as was used in the previous Hebb-Iearning models of Linsker 
(1986) and Kammen & Yuille (1988). (For a review of Hebbian learning and neural 
development see Kammen and Yuille 1990). Second, the input is Laplace filtered 
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to simulate the retinal processing stage; and third, all connections are rectified to 
be excitatory, like direct afferent input to simple cells. 

2.1 Overview 

We model the neuron as an array of non-negative synapses, distributed within a 
circular region. To let the neuron "see" a single pattern in the visual environment 
(see Figure 1, end of text), the array is overlaid on a much larger positive array (the 
filtered image), which represents the environment. Each synapse value is multiplied 
by its corresponding input pixel, and the sum of these products forms the neuron's 
"output." If the output is above a threshold value, each synapse is changed slightly 
to make it more like its corresponding pixel (the synapse is increased for a positive 
pixel, and decreased for a zero pixel.) If the output is low, nothing is changed. This 
process implements the correlation-based ("Hebbian") learning rule for synapse 
modification. To ensure maturation, we presented roughly one million training 
images to each neuron. Because there are many filtered images, only one is chosen 
at random for each iteration, and the neuron is overlapped at some random spatial 
offset. 

2.2 Input Filtering Process 

The visual environment is a collection of N black-on-white pictures of a single shape 
(such as straight lines), at fixed contrast. The environment seen by the neuron is 
a set of N filtered images, whose non-negative elements are produced from the 
pictures by a rectified, Laplace-like, center-surround process similar to that of the 
mammalian retina (Van Essen &, Anderson 1988). To determine the RF of a mature 
array of synapses, the combined efficacy of all synapses is calculated for each pixel, 
and displayed as a grey scale (white = excitatory, black = inhibitory). See Figure 
2, at end of text, for several examples of mature RF's. 

2.3 Plasticity Under Visual Stimulation 

The neuron's input synapses cover a circle much smaller than the filtered image. A 
single exposure to the environment overlaps the synapse array at a random position 
on the input image (chosen randomly from the training set). This overlap pairs 
each synapse with an input from a filter whose center has like polarity (on or off), 
so that each synapse represents a definite polarity of retinal cell. 

A typical run involves perhaps 106 exposures. There is no time variable, so that 
motion and temporal correlations between images are entirely absent. During each 
exposure a Hebb rule (section 2.4) changes synaptic weights based on current cell 
output and input values. When the neuron is exposed to filtered stochastic input 
("noise-rearing"), synapses are intitialized randomly. When the neuron is exposed 
to structured environments, synapses are initialized with the orderly synapse arrays 
which result from noise-rearing. (As in animals, synapses may evolve in response to 
filtered random input before they are exposed to the external environment.) 
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2.4 A Choice of Hebb Rules for Learning Plasticity 

Hebb postulated (1949) that neurons modify their synapses according to the fol­
lowing rule: the synapse will increase in efficacy if the post-synaptic and presy­
naptic excitations are coincident. There are many different formulae which satisfy 
Hebb's criterion; this model explores some simple representative ones. During each 
exposure to input, the synapses are adjusted according to the following type of 
hard-limited Hebb rule: 

And if (out - thresh) > 0 : 

out 

(out - thresht X ini X growth 

if ini > 0 and syni < 10 

-(out - thresh)" X decay 

if ini = 0 and syni > 0.5 

o otherwise 

(1) 

(2) 

(3) 

(4) 

The constants growth and decay are positive, and the exponent n is at least one. 
Both types of threshold depend on the neuron's recent output history: either the 
average of the previous 200 outputs, or one half the maximum previous output 
(decaying by .9995 each exposure until a new m;~ exceeds it) . This Hebb Rule 
assumes that the cell can detect the current input value before its modification by 
a synapse. 

2.5 Choice of Parameters 

The constants growth and decay are not sensitive parameters. We found that only 
three parameter regimes exist: all synapses saturate at maximum, all saturate at 
minimum, or some at maximum and some at minimum. Only the latter regime is 
of interest, because only it contains structured RF's. 

Most simulations used n = 1,2,3 with both thresholds. The threshold based on 
maximum output enhances learning selectivity, while the averaged output version 
can be derived from a principle of "excess information" (See Appendix) . Because 
simple cell RF's have approximately Gaussian envelopes (Jones & Palmer 1987), 
some simulations were done with Gaussian envelopes modulating the maximum 
synapse values. That modification made no difference in the results observed. 

3 Results and Discussion 

The production of oriented RFs during exposure to unstructured input confirms 
previous results by Linsker (1986) and Yuille et al. (1989), but with some im­
portant differences. Like those models, the neurons simulated here learn oriented 
stripe-patterns as a kind of lowest-energy configuration under exposure to spatially 
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correlated inputs. But unlike those models, we do not use: inhibitory connections 
or synapses; a synaptic-density gradient; a global conservation of synapse strength; 
or adjustable free parameters which can yield differently-shaped RFs. (In Linsker 
1986 the ratio of "on" to "off" synapses is art adjustable parameter; here, on and 
off pixels are represented equally.) Also, unlike previous models, mature RF's could 
have more than 3 lobes, depending on the ratio of filter size to RF size (Figure 2). 

Under exposure to images of bars at all orientations, the neuron developed a mature 
RF matching a single one of them. Under exposure to stripes of nearly a single 
orientation, development of a mature RF depended on the stripes' spatial frequency. 

In all cases, input patterns were learned much more quickly and strongly when 
their spatial frequency corresponded to the frequency of the Laplace filters. For 
input frequencies near the filter frequency, the resulting RF had a spatial frequency 
intermediate between the two. Otherwise, no learning occured unless the input 
frequency was a harmonic of the filter frequency, in which case the filter frequency 
was learned. Thus, this model predicts that enhanced learning might take place 
in kittens exposed to stripes of a single frequency, if that frequency is typical of 
simple-cell RF frequencies. 

Under exposure to arcs or circles (with diameter ~ 3 x annular width), the model 
consistently developed RF's which matched a portion of the circle. These results 
suggest that animals which see only circles of a certain scale during the critical 
period may develop curved RFs (Barrow 1987) which differ qualitatively from those 
observed by such experiments as Jones &, Palmer's (1987), who report seeing no 
curved contours in their point-by-point mappings of the RFs of normally-reared 
kittens. As with the stripes, the circles' annular width determines the spatial fre­
quency of the retinal and simple cells which will respond best. 

Such predictions must be treated with caution, because this paper does not simulate 
any version of the competing "selectional" model. It is possible that some of the 
effects predicted here for the "instructional" Hebbian model could also be observed 
by a "selectional" system. 

To experimentally observe such effects in laboratory animals, many other known 
biological influences (eye acuity, interneuron effects, etc.) must be accounted for. 
We consider such problems elsewhere (Softky &, Kammen in preparation), because 
they are of secondary importance to the striking and robust results of the model. 

In summary, we have a single-cell model which contains essential biological features 
(such as all-excitatory input and synapses, and no global renormalizations). This 
model developes mature, oriented receptive fields under exposure to stochastic input 
for a wide variety of Hebb rules and for all non-trivial parameter regimes studied, 
with no apparent limitations on the number of lobes learned. Under exposure 
to structured input characteristic of normal environments, the model maintains 
oriented RF's; under exposure to input of "resonant" spatial frequency, the model 
develops RF's which reflect any novel orientation, spatial frequency, or curvature 
of the stimuli. This general, rule-independent response to the spatial frequency of 
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a stimulus - and the specific mechanism for generating abnormally curved RF's -
may be useful in deciding experimentally whether simple cortical cells are indeed 
modifiable by Hebbian mechanisms. 

This model does not attempt to explain curve-detection in a normal visual system. 
We already know that normal simple cells are not tuned for curves, and there are 
credible theories of normal curve-detection (Dobbins et al. 1987.) Rather, this 
model proposes using stimuli tuned to the natural spatial frequency of simple cells 
to induce a RF property which is distinctly abnormal, in order to better understand 
the rules by which normal visual properties emerge. 

4 Appendix - Choice of Thresholds for the Hebb Rule 

The choice of the average output as a threshold for a Hebb rule can be interpreted 
as follows. Consider a developing neuron whose output is the sum of N inputs, 
each of which has independent probability distribution of mean a and standard 
deviation u. We can calculate the information content in that sum, whose value 
has probability distribution (from the central limit theorem) of 

P(out) oc ( -(out - (out))2) 
exp 2u2 • 

The Shannon information (Shannon & Weaver 1962) carried by the sequence is 

H( event) -In P( event) . 

The excess information above the information carried by the average is thus 

oc 

H(out) - H( < out» 
(out - (out) )2 

2u2 

(5) 

(6) 

(7) 

(8) 

Thus, a Hebb rule using n = 2 and thresh = (out) is equivalent to learning based 
on the excess information carried in the output of an immature neuron. 

The alternate threshold ( tmax) enhances selective learning for the following reason. 
If we consider the whole ensemble of patterns and shifts, the output characteristic 
which best distinguishes a matched synapse pattern from a random one is not its 
average output (the two averages are comparable for the all-excitatory case), but 
its maximum output. Thus, if a neuron can only 'remember' one characteristic 
number to serve as a threshold, then a number which changes during evolution 
(e.g. the maximum output) will refine selectivity more than one which is relatively 
constant. In addition, storing a maximum rather than an average removes the 
need to compute a running average, allowing unhindered evolution even after long 
periods of no input. 
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1) 

2) Place retinal field at a 
random location on the image. 

3) Filter retinal 
field, then expose 
the filtered image 
to the neuron's 
synapses. 

Calculate neuron's 
output, then adjust 
synaptic weights 

according to Hebb 
rule. 

Figure 1: Synapses Change Slightly During Each of a Million Iterations 

Figure 2: Learned Receptive Fields. Top row: Random pixel input, large (1) and 
small (r) filter sizes. Bottom row: Structured input, circular rings (1) and edges at 
differen t orientations (r). 


