
FIXED POINT ANALYSIS FOR RECURRENT
NETWORKS

Mary B. Ottaway Patrice Y. Simard
Dept. of Computer Science

University of Rochester
Rochester NY 14627

ABSTRACT

Dana H. Ballard

This paper provides a systematic analysis of the recurrent backpropaga­
tion (RBP) algorithm, introducing a number of new results. The main
limitation of the RBP algorithm is that it assumes the convergence of
the network to a stable fixed point in order to backpropagate the error
signals. We show by experiment and eigenvalue analysis that this condi­
tion can be violated and that chaotic behavior can be avoided. Next we
examine the advantages of RBP over the standard backpropagation al­
gorithm. RBP is shown to build stable fixed points corresponding to the
input patterns. This makes it an appropriate tool for content address­
able memories, one-to-many function learning, and inverse problems.

INTRODUCTION

In the last few years there has been a great resurgence of interest in neural network
learning algorithms. One of the most successful of these is the Backpropagation learning
algorithm of [Rumelhart 86], which has shown its usefulness in a number of applications.
This algorithm is representative of others that exploit internal units to represent very
nonlinear decision surfaces [Lippman 87] and thus overcomes the limits of the classical
percept ron [Rosenblatt 62].

With its enormous advantages, the backpropagation algorithm has a number of dis­
advantages. Two of these are the inability to fill in patterns and the inability to solve
one-to-many inverse problems [Jordan 88]. These limitations follow from the fact that
the algorithm is only defined for a feedforward network. Thus if part of the pattern is
missing or corrupted in the input, this error will be propagated through to the output and
the original pattern will not be restored. In one-to-many problems, several solutions are
possible for a given input. On a feedforward net, the competing targets for a given input
introduce contradictory error signals and learning in unsuccessful.

Very recently, these limitations have been removed with the specification of a recurrent
backpropagation algorithm [Pineda 87]. This algorithm effectively extends the backpropa­
gation idea to networks of arbitrary connection topologies. This advantage, however, does
not come without some risk. Since the connections in the network are not symmetric, the
stability of the network is not guaranteed. For some choices of weights, the state of the
units may oscillate indefinitely.

This paper provides a systematic analysis of the recurrent backpropagation (RBP)
algorithm, introducing a number of new results. The main limitation of the RBP algorithm
is that it assumes the convergence of the network to a stable fixed point in order to

149

150 Simard, Ottaway and Ballard

backpropagate the error signals. We show by experiment and eigenvalue analysis that this
condition can be violated and that chaotic behavior can be avoided.

Next we examine the advantage in convergence speed of RBP over the standard back­
propagation algorithm. RBP is shown to build stable fixed points corresponding to the
input patterns. This makes it an appropriate tool for content addressable memories, many­
to-one function learning and inverse problem.

MODEL DESCRIPTION

The simulations have been done on a recurrent backpropagation network with first order
units. Using the same formalism as [Pineda 87], the vector state x is updated according
to the equation:

where
Ui = LWijXj for i=I,2 , . .. ,N

j

The activation function is the logistic function

(1)

(2)

(3)

The networks we will consider are organized in modules (or sets) of units that perform
similar functions. For example, we talk about fully connected module if each unit in the
module is connected to ea.ch of the others. An input module is a set of units where each
unit has non-zero input function Ii . Note that a single unit can belong to more than
one module at a time. The performance of the network is measured through the energy
function:

where

N

1 '"' 2 E = "2 L..J J j

i=1

(4)

(5)

An output module is a set of units i such that Ji '" O. Units that do not belong to any
input or output modules are called hidden units. A unit (resp module) can be damped
and undamped. When the unit (resp module) is undamped, Ii = Ji = 0 for the unit
(resp the module). If the unit is damped, it behave according to the pattern presented to
the network. Unclamping a unit results in making it hidden. Clamping and unclamping
actions are handy concepts for the study of content addressable memory or generalization.

The goal for the network is to minimize the energy function by changing the weights
accordingly. One way is to perform a gradient descent in E using the delta rule:

(6)

where 71 is a learning rate constant. The weight variation as a function of the error is given
by the formula [Pineda 8i, Almeida 87]

(7)

Fixed Point Analysis for Recurrent Networks 151

where yi is a solution of the dynamical system

(8)

The above discussion, assumes that the input function I and the target T are constant
over time. In our simulation however, we have a set of patterns Po. presented to the
network. A pattern is a tuple in ([0,1] U {U})N, where N is the total number of units
and U stands for undamped. The ith value of the tuple is the value assigned to Ii and Ti
when the pattern is presented to the network (if the value is U, the unit is undamped for
the time of presentation of the pattern). This definition of a pattern does not allow hOI.
and Tio. to have different values. This is not an important restriction however since we
can can always simulate such an (inconsistent) unit with two units. The energy function
to be minimized over all the patterns is defined by the equation:

Etotal = L E(a) (9)
a

The gradient of Etotal is simply the sum of the gradients of E(a), and hence the updating
equation has the form:

dWij/dt = 17 I: Yi(a)xj(a) (10)
a

\"'hen a pat tern Po. is presented to the network, an approximation of x j (a) is first
computed by doing a few iterations using equation 1 (propagation). Then, an approx­
imation of yoo (a) is evaluated by iterating equation 8 (backpropagation). The weights
are finally updated using equation 10. If we assume the number of iterations to evaluate
xj(a) and yj(a) to be constant, the total number of operations required to update the
weights is O(N 2). The validity of this assumption will be discussed in a later section.

CONVERGENCE OF THE NETWORK

The learning algorithm for our network assumes a correct approximation of xoo. This value
is computed by recursively propagating the activation signals according to equation 1. The
effect of varying the number of propagations can be illustrated with a simple experiment.
Consider a fully connected network of eight units (it's a directed anti-reflexive graph).
Fonr of them are auto-associative units which are presented various patterns of zeroes and
ones. An auto-associative unit is best viewed as two visible units, one having a.ll of the
incoming connect.ions and one having all of the outgoing connections. When the auto­
associat.ive unit is not cla.mped, it is viewed as a hidden unit. The four remaining units
arc hidden. The error is measured by the differences between the a.ctivations (from the
incoming connections) of t.he auto-associat.ive units and the corresponding target value
7~ for each pattern. In running the experiment, eight patterns were presented to the
network perfo[213zrming 1 to 5 propagations of the activations using Equation 1, 20 back­
propa.gations of the error signals according to Equation 8, and one update (Equation 10)
of the weights per preselltat,ion. We define an epoch to be a sweep through the eight
patterns using the above formula of execution on each. The corresponding results using
a learning rate of 0.2 are shown in figure 1. It can easily be seen that using one or two
propagations does not suffice to set the hidden units to their correct values. However,
the network does learn correctly how to reproduce the eight patterns when 3 or more

152 Simard, Ottaway and Ballard

4

1 'on

3
•......• .2. P.I:<?P.~~~~!?~~ "

Error 2

1

0

0 500 1000 1500 2000

4

3

Error 2
back-propagation

1
3 4 back-propagations

0

0 500 1000 1500 2000

Figure 1: Learning curves for a recurrent network with different numbers of propa­
gations of the activation and back-propagation of the error signals.

Fixed Point Analysis for Recurrent Networks 153

propagations are done after each presentation of a new pattern. This is not surprising
since the rate of convergence to a fixed point is geometric (if the fixed point is stable),
thus making only a few propagations necessary. We suspect that larger networks with a
fully connected topology will still only require a few iterations of forward propagation if
the fixed points are fairly stable. In the next section, we will study a problem, where this
assumption is not true. In such a situation, we use an algorithm where the number of
forward propagations varies dynamically.

For some specialized networks such as a feed-forward one, the number of propagations
must be at least equal to the number of layers, so that the output units receive the
activation corresponding to the input before the error signal is sent.

Similarly, yOO is computed recursively by iterative steps. We used the same experiment
as described above with 1 to 4 back-propagations of the error signals to evaluate the time
yt takes to converge. The rest of this experiment remained the same as above, except
that the number of propagations for xt was set to 20. The learning curves are shown in
figure 1. It is interesting to note that wi th only one propagation of the error signal, the
system was able to complete the learning, for the isolated curve tends toward the other
curves as time increases. The remaining four curves lie along the same path because the
error signals rapidly become meaningless after few iterations. The reason for this is that
the error signals are multiplied by gi(ui) = WijXi(I- Xi) when going from unit i to unit j,
which is usually much smaller than one because I xi(I-xi) I is smaller than 0.25. The fact
that one iteration of the error signal is enough to provide learning is interesting for VLSI
applications: it enables the units to work together in an asynchronous fashion. If each unit
propagates the activation much more often than it backpropagates the error signals the
system is, on average, in a stable state when the backpropagation occurs and the patterns
are learned slowly. This ability for recurrent networks to work without synchronization
mechanisms makes them more compatible with physiological network systems.

The above discussion assumed that X OO exists and can be computed by recursively
computing the activation function. However, it has been shown ([Simard 88]) that for
any activation function, there are always sets of weights such that there exist no stable
fixed points. This fact is alarming since X OO is computed recursively, which implies that
if there is no stable fixed point, x' will fail to converge, and incorrect error signals will
be propagated through the system. Fortunately, the absence of stable fixed points turns
out not to be a problem in practice. One reason for this is that they are very likely to be
present given a reasonable set of initial weights. The network almost always starts with a
unique stable fixed point. The fixed points are searched by following the zero curve of the
homotopy map

(11)

for different [ail starting at).. = O. The results indicate that the probability of getting
unstable fixed points increases with the size of the network. We always found a stable
fixed point for networks with less than 50 units. Out of 500 trials of 100 unit networks
starting with random weights between -1 and +1, we found two set of weights with no
stable fixed points. However, even in that case, most of the eigenvalues were much less
than 1, which means that oscillations are limited to one or two eigenvector axes.

Since it is possible to start with a network that has no stable fixed points, it is of
interest whether it will still learn correctly. Since searching for all the fixed points (by
trying different [ail in equation 11) is computationally expensive, we choose, as before,
a simple learning experiment. The network's layout is the same as previously described.
However, we know (from the previous result) than it probably has no unstable fixed points

154 Simard, Ottaway and Ballard

Eigen1

value

\

..

--~~---------------
'"

O-L--
3

2

Error

1

-':'::":":w"
~-... . >.~

.............. -.&.. •:,.. • ...:.,.. •• •• ••• • • •
....... -..., ' 0. -- -:.

~----.---... . . -----..

O-+--------------~----------------r_-------------

o 50 100

Figure 2: top Maximum eigenvalues for the unstable fixed point as a function of the
number of epochs. bottom Error as a function of the number of epochs.

Fixed Point Analysis for Recurrent Networks 155

since it only has four hidden units. To increase the probability of getting a fixed point that
is unstable, we make the initial weights range from -3 to 3 and set the thresholds so that
[0.5] is a fixed point for one of the patterns. This fixed point is more likely to be unstable
since the partial derivative ofthe functions (which are equal to 8gi(Ui)/8xj = wijxi(l-Xi)
at the fixed point) are maximized at [Xi] = [0.5] and therefore the Jacobian is more likely
to have big eigenvalues. Figure 2 shows the stability of that particular fixed point and
the error as a function of the number of epochs. Three different simulations were done
with different sets of random initial weights. As clearly shown in the figure, the network
learns despite the absence of stable fixed points. Moreover, the observed fixed point(s)
become stable as learning progresses. In the absence of stable fixed points, the weights
are modified after a fixed number of propagations and backpropagations. Even though
the state vector of the network is not precisely defined, the state space trajectory lies in a
delimited volume. As learning progresses, the projection of this volume on the visible units
diminishes to a single point (stable) and moves toward a target point that correspond to
the presented pattern on the visible units. Note that our energy function does not impose
constraints on the state space trajectories projected on the hidden units [Pearl mutter 88].

"RUNAWAY" SIMULATIONS

The next question that arises is whether a recurrent network goes to the same fixed point
at successive epochs (for a given input) and what happens if it does not. To answer this
question, we construct two networks, one with only feed forward connections and one with
feed back connections. Bot.h networks have 3 modules (input, hidden and output) of 4
units each. The connections of the feed forward network are between the input and the
hidden module and between the hidden and the output module. The connections of the
recurrent net.work are identical except that the there are connections between the units of
the hidden module. The rationale behind this layout is to ensure fairness of comparison
between feed forward and feedback backpropagation. Each network is presented sixteen
distiuct patterns on the input with sixteen different random patterns on the output. The
patterns consist of zeros and ones. This task is purposely chosen to be fairly difficult (16
fixed points on the four hidden units for the recurrent net) and will make the evaluation of
X OO difficult. The learning curves for the networks are shown in Figure 3 for a learning rate
of 0.2. We can see that the network with recurrent connections learn a slightly faster than
the feed forward network. However, a more careful analysis reveals that when the learning
rate is increased, the recurrent network doesn't always learn properly. The success of the
learning depends on the number of iterations we use in the computation of xt. As clearly
shown on the Figure 3, if we use 30 iterations for xt the network fails to learn, although
40 iterations yields reasonable results. The two cases only differ by the value of xt used
when the error signals are backpropagated.

According to our interpretation, recurrent backpropagation learns by moving the fixed
points (or small volume state trajectories) toward target values (determined by the out­
put). As learning progresses, the distances between the fixed points and the target values
diminish, causing the error signals to become smaller and the learning to slow down. How­
ever if the network doesn't come close enough to the fixed point (or the small volume
state trajectory), the new error (the distance between the current state and the target)
can suddenly be very large (relatively to the distance between the fixed point and the
target). Large incorrect error signals are then introduced into the system. There are two
Ca.seS: if the learning rate is small, a near miss has lit tie effect on the learning curve and
RBP learns faster than the feed forward network. If, on the other hand, the learning rate

156 Simard, Ottaway and Ballard

6

4

Error
.....

"

O-+-------.--------.-------r-------~------~-------

o 500 1000 1500 2000 2500

6

4

Error
' ..

2 . ..•..•.. .•.• ~•. .• ~.--rr-.-r-. ..."... • ..._:_.__:"'.~.' • .

O-+------~--------.-------r-------~------~-------

o 100 200 300 400 500

6

4

Error

2

O-+------~------~.-------r-------~------~-------

o 100 200 300 400 500

Figure 3: Error as a function of the number of epochs for a feed forward net (dotted)
and a recurrent net (solid or dashed). top: The learning rate is set to 0.2. center:
The learning rate is set to 1.0. The solid and the dashed lines are for recurrent
net with 30 and 40 iterations of xt per epochs respectively. bottom: The learning
rate is variable. The recurrent network has a variable number of iteration of xt per
epochs.

1

X2

0

Fixed Point Analysis for Recurrent Networks 157

1 1
• . ~ -

\ \ \
X2 X2

•

~\ I ~ . 0 • 0
0 1 0 1 0

Xl Xl Xl

Figure 4: State space and fixed point. Xl and X2 are the activation of two units
of a fully connected network. left: Before learning, there is one stable fixed point
center: After learning a few pattern, there are two desired stable fixed points. right:
After learning several patterns, there are two desired stable fixed points and one
undesired stable fixed point.

is big, a near miss will induce important incorrect error signals into the system which in
turn makes the next miss more dramatic. This runaway situation is depicted on the center
of Figure 3. To circumvent this problem we vary the number of propagations as needed
until successive states on the state trajectory are sufficiently close. The resulting learning
curves for feed forward and recurrent nets are plotted at the bottom of Figure 3. In these
simulations the learning rates are adjusted dynamically so that successive error vectors
are almost colinear, that is:

-0.7 < cos(~w:j' ~W:1l) < 0.9 (12)

As can be seen recurrent and feed forward nets learn at the same speed. It is interesting to
mention that the average learning rate for the recurrent net is significantly smaller (:::::: 0.65)
than for the feed forward net (:::::: 0.80). Surprisingly, this doesn't affect the learning speed.

CONTENT ADDRESSABLE MEMORIBS

An interesting property of recurrent networks is their ability to generate fixed points that
can be used to perform content addressable memory [Lapedes 86, Pineda 87]. Initially,
a fully connected network usually has only one stable fixed point (all units undamped)
(see Figure 4, left). By clamping a few (autoassociative) units to given patterns, it is
possible, by learning, to create stable fixed points for the undamped network (Figure 4,
center). To illustrate this property, we build a network of 6 units: 3 auto associative units

1

158 Simard, Ottaway and Ballard

fixed points Maximum
autoassociative units hidden units eigenvalue

0.0402 0.0395 0.9800 0.8699 0.0763 0.0478 0.4419
0.9649 0.0176 0.0450 0.0724 0.8803 0.4596 0.6939
0.0830 0.9662 0.0658 0.2136 0.0880 0.8832 0.8470
0.9400 0.9619 0.9252 0.1142 0.1692 0.5164 0.8941
0.9076 0.5201 0.0391 0.0448 0.6909 0.7431 1.2702

Table 1: Fixed points for content addressable memory

and 3 hidden units. The three autoassociative units are presented patterns with an odd
number of ones in them (there are 4 such patterns on 3 units: 1 0 0, 0 1 0, 0 Oland
1 1 1). The network is fully connected. After 5000 epochs, the auto-associative units are
undamped for testing. All the fixed points found for the network of 6 (undamped) units
are given in table 1. As can be seen, the four stable fixed points are exactly the four
patterns presented to the network. Moreover their stability guarantees that the network
can be used for CAM (content addressable memory) or for one-to-many function learning.
Indeed, if the network is presented incomplete or corrupted patterns (sufficiently dose to a
previously learned pattern), it will restore the pattern as soon as the incorrect or missing
units are undamped by converging to a stable fixed point. If there are several correct
pattern completions for the damped units, the network will converge to one of the pattern
depending on the initial conditions of the undamped units (which determine the state
space trajectory). These highly desirable properties are the main advantages of having
feedback connections. V.le note from table 1 that a fifth (incorrect) fixed point has also
be found. However, this fixed point is unstable (Maximum eigenvalue = 1.27) and will
therefore never be found during recursive searches.

In the previous example, there are no undesired stable fixed points. They are, however,
likely to appear if the learning task becomes more complex (Figure 4, right). The reason
why they are difficult to avoid is that unless the units are undamped (the learning is
stopped), the network cannot reach them. Algorithms which eliminate spurious fixed
points are presently under study.

CONCLUSION

In this paper, we have studied the effect of introducing feedback connections into feed
forward networks. We have shown that the potential disadvantages of the algorithm, such
as the absence of stable fixed points and chaotic behavior, can be overcome. The resulting
systems ha\'e several interesting properties. First, allowing arbitrary connections makes a
network more physiologically plausible by removing structural constraints on the topology.
Second, the increased number of connections diminishes the sensitivity to noise and slightly
improves the speed of learning. Finally, feedback connections allow the network to restore
incomplete or corrupted patterns by following the state space trajectory to a stable fixed
point. This property can also be used for one-to-many function learning. A limitation of
the algorithm, however, is that spurious stable fixed points could lead to incorrect pattern
completion.

Fixed Point Analysis for Recurrent Networks 159

References
[Almeida 87] Luis B. Almeida, in the Proceedings of the IEEE First Annual International

Conference on Neural Networks, San Diego, California, June 1987.

[Lapedes 86] Alan S. Lapedes & Robert M. Farber A self-optimizing nonsymmetrical neu­
ral net for content addressable memory and pattern recognition. Physica D22, 247-
259, 1986.

[Lippman 87] Richard P. Lippman, An introduction to computing with neural networks,
IEEE ASSP Magazine April 1987.

[Jordan 88] Michael I. Jordan, Supervised learning and systems with excess degrees of
freedom. COINS Technical Report 88-27. Massachusetts Institute of Technology. 1988.

[Pearlmutter 88] Barak A. Pearlmutter. Learning State Space Trajectories in Recurrent
Neural Networks. Proceedings of the Connectionnist Models Summer School. pp. 113-
117. 1988.

[Pineda 87] Fernando J. Pineda. Generalization of backpropagation to recurrent and
higher order neural networks. Neural Information Processing Systems, New York,
1987.

[Pineda 88] Fernando J. Pineda. Dynamics and Architecture in Neural Computation. Jour­
nal of Complexity, special issue on Neural Network. September 1988.

[Simard 88] Patrice Y. Simard, Mary B. Ottaway and Dana H. Ballard, Analysis of re­
current backpropagation. Technical Report 253. Computer Science, University of
Rochester, 1988.

[Rosenblatt 62] F. Rosenblatt, Principles of Neurodynamics, New York: Spartam Books,
1962.

[Rumelhart 86] D. E. Rumelhart, G. E. Hinton, & R. J. Williams, Learning internal rep­
resentations by back-propagating errors. Nature, 323,533-536.

