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ABSTRACT 

Van Henkle 

The potential of adaptive networks to learn categorization rules and to 
model human performance is studied by comparing how natural and 
artificial systems respond to new inputs, i.e., how they generalize. Like 
humans, networks can learn a detenninistic categorization task by a 
variety of alternative individual solutions. An analysis of the con­
straints imposed by using networks with the minimal number of hidden 
units shows that this "minimal configuration" constraint is not 
sufficient to explain and predict human performance; only a few solu­
tions were found to be shared by both humans and minimal adaptive 
networks. A further analysis of human and network generalizations 
indicates that initial conditions may provide important constraints on 
generalization. A new technique, which we call "reversed learning", 
is described for finding appropriate initial conditions. 

INTRODUCTION 

We are investigating the potential of adaptive networks to learn categorization tasks and 
to model human performance. In particular we have studied how both natural and 
artificial systems respond to new inputs, that is, how they generalize. In this paper we 
first describe a computational technique to analyze generalizations by adaptive networks. 
For a given network structure and a given classification problem, the technique 
enumerates all possible network solutions to the problem. We then report the results of 
an empirical study of human categorization learning. The generalizations of human sub­
jects are compared to those of adaptive networks. A cluster analysis of both human and 
network generalizations indicates, significant differences between human perfonnance 
and possible network behaviors. Finally, we examine the role of the initial state of a net­
work for biasing the solutions found by the network. Using data on the relations between 
human subjects' initial and final performance during training, we develop a new tech­
nique, called "reversed learning", which shows some potential for modeling human 
learning processes using adaptive networks. The scope of our analyses is limited to gen­
eralizations in deterministic pattern classification (categorization) tasks. 
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The basic difficulty in generalization is that there exist many different classification rules 
("solutions") that that correctly classify the training set but which categorize novel 
objects differently. The number and diversity of possible solutions depend on the 
language defining the pattern recognizer. However, additional constraints can be used in 
conjunction with many types of pattern categorizers to eliminate some, hopefully 
undesirable, solutions. 

One typical way of introducing additional constraints is to minimize the representation. 
For example minimizing the number of equations and parameters in a mathematical 
expression, or the number of rules in a rule-based system would assure that some 
identification maps would not be computable. In the case of adaptive networks, minimiz­
ing the size of adaptive networks, which reduces the number of possible encoded func­
tions, may result in improved generalization perfonnance (Rumelhart, 1988). 

The critical theoretical and applied questions in pattern recognition involve characteriza­
tion and implementation of desirable constraints. In the first part of this paper we 
describe an analysis of adaptive networks that characterizes the solution space for any 
particular problem. 

ANALYSES OF ADAPTIVE NETWORKS 

Feed-forward adaptive networks considered in this paper will be defined as directed 
graphs with linear threshold units (LTV) as nodes and with edges labeled by real-valued 
weights. The output or activations of a unit is detennined by a monotonic nonlinear func­
tion of a weighted sum of the activation of all units whose edges tenninate on that unit 
There are three types of units within a feed-forward layered architecture: (1) Input units 
whose activity is determined by external input; (2) output units whose activity is taken as 
the response; and (3) the remaining units, called hidden units. For the sake of simplicity 
our discussion will be limited to objects represented by binary valued vectors. 

A fully connected feed-forward network with an unlimited number of hidden units can 
compute any boolean function. Such a general network, therefore, provides no con­
straints on the solutions. Therefore, additional constraints must be imposed for the net­
work to prefer one generalization over another. One such constraint is minimizing the 
size of the network. In order to explore the effect of minimizing the number of hidden 
units we first identify the minimal network architecture and then examine its generaliza­
tions. 

Most of the results in this area have been limited to finding bounds on the expected 
number of possible patterns that could be classified by a given network (e.g. Cover, 1965; 
Volper and Hampson, 1987; Valiant, 1984; Baum & Haussler, 1989). The bounds found 
by these researchers hold for all possible categorizations and are, therefore, too broad to 
be useful for the analysis of particular categorization problems. 

To determine the generalization behavior for a particular network architecture, a specific 
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categorization problem and a training set it is necessary to find find all possible solutions 
and the corresponding generalizations. To do this we used a computational (not a simu­
lation) procedure developed by Pavel and Moore (1988) for finding minimal networks 
solving specific categorization problems. Pavel and Moore (1988) defined two network 
solutions to be different if at least one hidden unit categorized at least one object in the 
training set differently. Using this definition their algorithm finds all possible different 
solutions. Because finding network solutions is NP-complete (Judd, 1987), for larger 
problems Pavel and Moore used a probabilistic version of the algorithm to estimate the 
distribution of generalization responses. 

One way to characterize the constraints on generalization is in terms of the number of 
possible solutions. A larger number of possible solutions indicates that generalizations 
will be less predictable. The critical result of the analysis is that, even for minimal net­
works. the number of different network solutions is often quite large. Moreover. the 
number of solutions increases rapidly with increases in the number of hidden units. The 
apparent lack of constraints can also be demonstrated by finding the probability that a 
network with a randomly selected hidden layer can solve a given categorization problem. 
That is, suppose that we se~t n different hidden units, each unit representing a linear 
discriminant fwction. The activations of these random hidden wits can be viewed as a 
ttansformation of the input patterns. We can ask what is the probability that an output 
unit can be found to perfonn the desired dichotomization. A typical example of a result 
of this analysis is shown in Figure 1 for the three-dimensional (3~) parity problem. In 
the minimal configuration involving three hidden units there were 62 different solutions 
to the 3D parity problem. The rapid increase in probability (high slope of the curve in 
Figure 1) indicates that adding a few more hidden units rapidly increases the probability 
that a random hidden layer will solve the 3D parity problem. 
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Figure 1 1be proportion of solutions to 3D parity problem (solid line) and the 
experimental task (dashed line) as a function of the number of hidden units. 

The results of a more detailed analysis of the generalization performance of the minimal 
networks will be discussed following a description of a categorization experiment with 
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human subjects. 

HUMAN CA TEGORIZA TION EXPERIMENT 

In this experiment human subjects learned to categorize objects which were defined by 
four dimensional binary vectors. Of the 24 possible objects, subjects were trained to clas­
sify a subset of 8 objects into two categories of 4 objects each. The specific assignments 
of objects into categories was patterned after Medin et aI. (1982) and is shown in Figure 
2. Eight of the patterns are designated as a training set and the remaining eight comprise 
the test seL The assignment of the patterns in the training set into two categories was 
such that there were many combinations of rules that could be used to correctly perfonn 
the categorization. For example, the first two dimensions could be used with one other 
dimension. The training patterns could also be categorized on the basis of an exclusive 
or (XOR) of the last two dimensions. The type of solution obtained by a human subject 
could only be determined by examining responses to the test set as well as the training 
seL 

TRAINING SET TEST SET 

X1 1 1 0 1 001 0 000 1 1 1 0 1 

DIMENSIONS ~ 1 1 1 0 000 1 001 0 1 1 1 0 
~ 101 0 101 0 o 1 0 1 o 1 0 1 
X. 101 0 o 1 0 1 o 1 0 1 o 1 0 1 

CATEGORY AAAA BBBB ??? ? ???? 

FigllTe 2. PattemI to be clulmed. (Adapted from Medin et aI .• 1982). 

In the actual experiments, subjects were asked to perform a medical diagnosis for each 
pattern of four symptoms (dimensions). The experimental procedure will be described 
here only briefly because the details of this experiment have been described elsewhere in 
detail (pavel, Gluck, Henkle, 1988). Each of the patterns was presented serially in a ran­
domized order. Subjects responded with one of the categories and then received feed­
back. The training of each individual continued until he reached a criterion (responding 
correctly to 32 consecutive stimuli) or until each pattern had been presented 32 times. 
The data reported here is based on 78 subjects, half (39) who learned the task to criterion 
and half who did DOL 

Following the training phase, subjects were tested using all 16 possible patterns. The 
results of the test phase enabled us to determine the generalizations perfonned by the 
subjects. Subjects' generalizations were used to estimate the "functions" that they may 
have been using. For example, of the 39 criterion subjects, 15 used a solution that was 
consistent with the exclusive-or (XOR) of the dimensions x 3 and X4. 

We use "response profiles" to graph responses for an ensemble of functions, in this case 
for a group of subjects. A response profile represents the probability of assigning each 
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pattern to category "A". For example, the response profile for the XOR solution is 
shown in Figure 3A. For convenience we define the responses to the test set as the "gen­
eralization profile". The response profile of all subjects who reached the criterion is 
shown in Figure 3D. The responses of our criterion subjects to the training set were basi­
cally identical and correct The distribution of subjects' genezalization profiles reflected 
in the overall generalization profile are indicative of considerable individual differences 
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Figwe 3. (A) Response profile of the XOR solution. and (B) a proportion of 
the response "A" to all patterns for human subjects (dark bars) and minimal 
networks (light bars). The lower 8 patterns are from the training set and the 
upper 8 patterns from the test set. 

MODEliNG THE RESPONSE PROFILE 

One of our goals is to model subjects' distribution of categorizations as represented by 
the response profile in Figure 3D. We considered three natural approaches to such 
modeling: (1) Statistical/proximity models, (2) Minimal disjunctive normal forms 
(DNF), and (3) Minimal two-layer networks. 

The statistical approach is based on the assumption that the response profile over subjects 
represents the probability of categorizations performed by each subject Our data are not 
consistent with that assumption because each subject appeared to behave deterministi­
cally. The second approach, using the minimal DNF is also not a good candidate because 
there are only four such solutions and the response profile over those solutions differs 
considerably from that of the SUbjects. Turning to the adaptive network solutions, we 
found all the solutions using the linear programming technique described above (pavel & 
Moore, 1988). The minimal two-layer adaptive network that was capable of solving the 
training set problem consisted of two hidden units. The proportion of solutions as a 
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function of the number of hidden units is shown in Figure 1 by the dashed line. 

For the minimal network there were 18 different solutions. These 18 solutions had 8 dif­
ferent individual generalization profiles. Assuming that each of the 18 network solution 
is equally likely. we computed the generalization profile for minimal network shown in 
Figure 3B. The response profile for the minimal network represents the probability that a 
randomly selected minimal network will assign a given pattern to category "A". Even 
without statistical testing we can conclude that the generalization profiles for humans and 
networks are quite different. It is possible. however. that humans and minimal networks 
obtain similar solutions and that the differences in the average responses are due to the 
particular statistical sampling assumption used for the minimal networks (i.e. each solu­
tion is equally likely). In order to determine the overlap of solutions we examined the 
generalization profiles in more detail. 

CLUSTERING ANALYSIS OF GENERALIZATION PROFILES 

To analyze the similarity in solutions we defined a metric on generalization profiles. The 
Hamming distance between two profiles is equal to the number of patterns that are 
categorized differently. For example. the distance between generalization profile •• A A 
B A B B B B" and "A A B B B B A B" is equal to two. because the two profiles differ 
on only the fourth and seventh pattern. Figure 4 shows the results of a cluster analysis 
using a hierarchical clustering procedure that maximizes the average distance between 
clusters. 
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Figlll'll 4. Results of hierarchical clustering for human (left) and network 
(right) generalization profiles. 

• • c • • • c • • 3 c • c 

In this graph the average distance between any two clusters is shown by the value of the 
lowest common node in the tree. The clustering analysis indicates that humans and 
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networks obtained widely different generalization profiles. Only three generalization 
profiles were found to be common to human and networks. This number of common 
generalizations is to be expected by chance if the human and network solutions are 
independent Thus, even if there exists a learning algorithm that approximates the human 
probability distribution of responses, the minimal network would not be a good model of 
human perfonnance in this task. 

It is clear from the previously described network analysis that somewhat larger networks 
with different constraints could account for human solutions. In order to characterize the 
additional constraints, we examined subjects' individual strategies to find out why indivi­
dual subjects obtained different solutions. 

ANALYSIS OF HUMAN LEARNING STRATEGIES 

Human learning strategies that lead to preferences for particular solutions may best be 
modeled in networks by imposing constraints and providing hints (Abu-Mostafa 1989). 
These include choosing the network architecture and a learning rule, constraining con­
nectivity, and specifying initial conditions. We will focus on the specification of initial 
conditions. 

30 

20 

10 

o 

CI .. CONSISTENT 

• CONSISTENT 

lOR NON lOR 
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NO CRrTERION 

FiglU'e 5. The number of consistent or non-stable responses (black) and the 
nwnber of stable incorrect responses (light) for XOR, Non-XOR criterion su~ 
jeers, and for those who never reached criterion. 

Our effort to examine initial conditions was motivated by large differences in learning 
curves (Pavel et al., 1988) between subjects who obtained the XOR solutions and those 
who did not The subjects who did not obtain the XOR solutions would perfonn much 
better on some patterns (e.g. 0001) then the XOR subjects, but worse on other patterns 
(e.g. 10(0). We concluded that these subjects during the first few trials discovered rules 
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that categorized most of the training patterns correctly but failed on one or two training 
patterns. 

We examined the sequences of subjects' responses to see how well they adhered to 
"incorrect" rules. We designated a response to a pattern as stable if the individual 
responded the same way to that pattern at least four times in a row. We designated a 
response as consistent if the response was stable and correct The results of the analysis 
are shown in Figure 5. These results indicate that the subjects who eventually achieved 
the XOR solution were less likely to generate stable incorrect solutions. Another impor­
tant result is that those subjects who never learned the correct responses to the training 
set were not responding randomly. Rather, they were systematically using incorrect 
rules. On the basis of these results, we conclude that subjects' initial strategies may be 
important detenninants of their final solutions. 

REVERSED LEARNING 

For simplicity we identify subjects' initial conditions by their responses on the first few 
trials. An important theoretical question is whether or not it is possible to find a network 
structure, initial conditions and a learning rule such that the network can represent both 
the initial and final behavior of the subject In order to study this problem we developed 
a technique we call ""reversed leaming". It is based on a perturbation analysis of feed­
forward networks. We use the fact that the error surface in a small neighborhood of a 
minimum is well approximated by a quadratic surface. Hence, a well behaved gradient 
descent procedure with a starting point in the neighborhood of the minimum will find that 
'minimum. 

The reversed learning procedure consists of three phases. (1) A network is trained to a 
final desired state of a particular individual, using both the training and the test patterns. 
(2) Using only the training patterns, the network is then trained to achieve the initial state 
of that individual subject closest to the desired final state (3) The network is trained with 
only the training patterns and the solution is compared to the subject's response profiles. 
Our preliminary results indicate that this procedure leads in many cases to initial condi­
tions that favor the desired solutions. We are currently investigating conditions for 
finding the optimal initial states. 

CONCLUSION 

The main goal of this study was to examine constraints imposed by humans (experimen­
tally) and networks (linear programming) on learning of simple binary categorization 
tasks. We characterize the constraints by analyzing responses to novel stimuli. We 
showed that. like the humans, networks learn the detenninistic categorization task and 
find many, very different. individual solutions. Thus adaptive networks are better models 
than statistical models and DNF rules. The constraints imposed by minimal networks, 
however, appear to differ from those imposed by human learners in that there are only a 
few solutions shared between human and adaptive networks. After a detailed analysis of 
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the human learning process we concluded that initial conditions may provide imPOl'Wlt 
constraints. In fact we consider the set of initial conditions as .powerful "hints" (Abu­
Mostafa, 1989) which reduces the number of potential solutions. without reducing the 
complexity of the problem. We demonstrated the potential effectiveness of these con­
straints using a perturbation technique. which we call reversed learning, for finding 
appropriate initial conditions. 
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