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ABSTRACT

One attempt at explaining human inferencing is that of spread-
ing activation, particularly in the structured connectionist para-
digm. This has resulted in the building of systems with semanti-
cally nameable nodes which perform inferencing by examining
the patterns of activation spread. In this paper we demonstrate
that simple structured network inferencing can be performed by
passing activation over the weights learned by a distributed algo-
rithm. Thus, an account is provided which explains a well-
behaved relationship between structured and distributed connec-
tionist approaches.

INTRODUCTION

A primary difference between the neural networks of 20 years ago and the
current generation of connectionist models 1s the addition of mechanisms which
permit the system to create an internal representation. These subsymbolic,
semantically unnameable, features which are induced by connectionist learning
algorithms have been discussed as being of import both in structured and distri-
buted connectionist networks (c¢f. Feldman and Ballard, 1982; Rumelhart and
MecClelland, 1986). The fact that network learning algorithms can create these
microfeatures is not, however. enough in itself to account for how cognition
works. Most. of what we call intelligent thought derives from being able to rea-
son about the relations between objects, to hypothesize about events and things,
etc. If we are to do cognitive modeling we must complete the story by explaining
how networks can reason in the way that humans (or other intelligent beings) do.

One attempt at explaining such reasoning is that of spreading activation in the
structured connectionist and marker—passing (¢f. Charniak, 1983; Hendler, 1987)
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approaches. In these systems semantically nameable nodes permit an energy
spread, and reasoning about the world is accounted for by looking at either
stable configurations of the activation (the structured connectionist approach) or
at the paths found by examining intersections among the nodes (the marker—
passing technique). In this paper we will demonstrate that simple structured-
network-like inferencing can be performed by passing activation over the weights
learned by a distributed algorithm. Thus, an account is provided which explains
a well-behaved relationship between structured and distributed connectionist
approaches.

THE SPREADING ACTIVATION MODEL

In this paper we will demonstrate that local connectionist-like networks can be
built by spreading activation over the microfeatures learned by a distributed net-
work. To show this, we start with a simple example which demonstrates the
activation spreading mechanism used. The particular network we will use in this
example is a 6-3-8 three-layer network trained by the back-propagation learning
algorithm. The training set used is shown in table 1. The weights between the
output nodes and hidden units which are learned by the network (after learning
to the 909 level for a typical run) are shown in figure 1.

TABLE 1. Training Set for Example 1.

Input Output.
Pattern Pattern

000000 10000000
000011 01000000
001100 00100000
0o1rsy11 00010000
110000 00001000
110011 00000100
111100 00000010
111111 00000001
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Weights
hi h2 h3
nt -4.98 4.40 -2.82
n2 -6.99 -4.99 -2.23
n3 -6.11 3.49 0.30
n4 -6.37 -4.68 2.53
ns 4.36 3.73 -5.09
né 4.38 -5.97 -3.67
n7 0.89 1.07 3.32
né 3.88 -6.95 1.88

Figure 1. Weights Learned by Back Propagation

To understand how the activation spreads, let us examine what occurs when
activation is started at node ni with a weight of 1. This activation strength is
divided by the outbranching of the node and then multiplied by the weight of
each link to the hidden units. Thus activation flows from n/ to A/ with a
strength of (/8 x Weighi(n1,h1). A similar computation is made to each of the
other hidden units. This activation now spreads to each of the other output
nodes in turn. Thus, n2 would gain activation of

Activationfhl) r Weight(n2,h1)/8 +
Activation(h2) x Weight(n2,h2)/8 +
Activation(h3) + Weight(n2,h3)/8

or .80 from n{.

Table 2 shows a graph of the activation spread between the output units. The
table, which is symmetric, can thus be read as showing the output at each of the
other units when an activation strength of [ is placed at the named node. l.ook-
ing at the table we see that the highest activation occurs among nodes which
share the most features of the input (i.e. same value and position) while the
lowest is seen among those patterns sharing the fewest features.
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However, as well as having this property, table 2 can be seen as providing a
matrix which specifies the weights between the output nodes if viewed as a struc-
tured network. That is. nf 15 connected to n2 by a strength of +.80, to n3 by a
strength of +1.03, etc. Thus. by using this technique distributed representations
can be turned into connectivity weights for structured networks. When non-
orthogonal weights are used. the same activation-spreading algorithm produces a
structured network which can be used for more complex inferencing than can the
distributed network alone.

We demonstrate this by a simple. and again contrived. example. This example is
motivated by Gary Cottrell’s structured model for word sense disambiguation
(Cottrell, 1985). Cottrell, using weights derived by hand, demonstrated that a
structured connectionist. network could distinguish both word-sense and case-slot
assigniments for ambiguous lexical items. Presented with the sentence “John
threw the fight” the system would activate a node for one meaning of “‘throw,”
presented with “John threw the ball” it would come up with another. The nodes
of Cottrell’s network included words (John. Threw, etc.). word senses (Johnl,
Propel. etc.) and case-slots (TAGT (agent of the throw). PAGT (agent of the
Propel). etc.).

TABLE 2. Activation Spread in 6 -3-8 Network.

ni n? ng n4 ns nf n7 n&
nl ® .80 1.03 Y i 38 157 -.38 -2.3
n?2 .80 . 1.02 26 -1.57 31 =79 14
n4 1.03 1.02 ° 97 -.63  -2.03 -03 -1.97
n4 5 ¥ 2.60 97 e 242 -38 -.09 52
nd 38  -1.57 -.63 -2.42 s b4 38 -7
n6  -1.57 31 -2.03 -.38 64 o -6 2.14
n7 ~.38 -.79 -.03 -.09 -.38 -6 ® 09
n8 -2.3 -.14  -1.97 .h2 -77 2.14 .09 *

To duplicate Gary’s network via training, we presented a 3-layer backprop net-
work with a training set in which distributed patterns, very loosely corresponding
to a “‘dictionary” of word encodings! were associated with a vector representing
each of the individual nodes which would be represented in Cottrell’s system, but
with no structure. Thus, each element in the training set is

1— Which in any realistic systein would some day be replaced by actual signal processing out-
puts or other representations of actnal word pronunciation forms.
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a 16 bit vector (representing a four word sentence. each word as a 4 bit pattern),
associated with another 16 bit vector representing the nodes

Bobl Johnl propel threw hght1 balll pagt pobj tagt tobj bob john threw the
fight ball

For this example, the system was trained on the encodings of the four sentences

John threw the ball
John threw the fight
Bob threw the bhall

Bob threw the fight

with the output set high for those objects in the second vector which were
appropriately associated. as shown in Table 3.

TABLE 3. Training Set for Example 2.

Input Output

Pattern Pattern
0110 0001 0101 0010  1001100011101110
0110 0001 0101 1010  1010011100101101
1001 0001 0101 0010 0101100011011110
1001 0001 0101 1010 0110011100011101

Upon completion of the learning, the activation spreading algorithin was used to
derive a table of connectivity weights between the output units as shown in table
4.

These weights were then transferred into a local connectionist simulator and a
very simple activation spreading model was used to examine the results. When
we run the simulator. using the activation spreading over learned weights,
exactly the results produced by Cottrell’s network are seen. Thus:

Activation from the nodes corresponding to john. throw, the. and fight
cause a positive activation at the node for “Throw™ and a negative ac-
tivation at the node for “Propel.”

while
Activation from john throw the ball spread positively to “Propel” and
not to “throw.”

Further, other effects which are also predicted by Cottrell’s model are seen:

Activation at TAGT and TOBJ spreads positive activation to Throw
and not to Propel.

and
Activation at PAGT and POBJ causes a spread to Propel but not to
Throw.
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TABLE 4. Connectivity Weights for Example 2.

-0.12 0.01 -0.01 -0.01 0.01 0.01 0.01 -0.01 -0.01 0.12 -0.12 -0.03 -0.03 -0.01

-0.12 *** _0.01 0.01 0.01 -0.01 -0.01 -0.01 0.01 0.01 -0.12 0.12 0.03 0.03 0.01
0.01 -0.01 *** -0.04 -0.04 0.04 0.04 0.05-0.05-0.04 0.01 -0.01 -0.02 -0.02 -0.04 0.04
-0.01 0.01 -0.04 *** 0.04 -0.04 -0.04 -0.05 0.05 0.04 -0.01 0.01 0.02 0.02 0.04 -0.04
-0.01 0.01 -0.04 0.04 *** -0.04 -0.05 -0.05 0.05 0.04 -0.01 0.01 0.02 0.02 0.04 -0.04
0.01 -0.01 0.04 -0.04 -0.04 *** 0.05 0.05-0.05-0.04 0.01 -0.01 -0.02 -0.02 -0.04 0.04
0.04 -0.01 0.04 -0.04 -0.05 0.05 *** 0.05 -0.05 -0.05 0.01 --0.00 -0.02 -0.02 -0.04 0.05
0.01 -0.01 0.05 -0.05 -0.05 0.05 0.05 *** -0.05-0.05 0.01 -0.01 -0.02 -0.02 -0.04 0.05
-0.01 0.01 -0.05 0.05 0.05 -0.05 -0.05 -0.05 *** 0.05 -0.01 0.01 0.02 0.03 0.04
-0.01 0.01 -0.04 0.04 0.04 -0.04 -0.05 -0.05 0.05 *** -0.01 0.01 0.02 0.02 0.04
0.12 -0.12 0.01 -0.01 -0.01 0.01 0.01 0.01 -0.01 -0.01 *** -0.12 -0.03 -0.03 -0.01
-0.12 0.12 -0.01 0.01 0.01 -0.01 -0.00 -0.01 0.01 0.01 -0.12 *** 0.03 0.03 0.01
-0.03 0.03 -0.02 0.02 0.02 -0.02 -0.02 -0.02 0.02 0.02--0.03 0.03 *** 0.20 0.02
~0.03 0.03 -0.02 0.02 0.02 -0.02 -0.02 -0.02 0.03 0.02 0.03 0.03 0.20 *** 0.02
~0.01 0.01 -0.04 0.04 0.04 -0.04 -0.04 -0.04 0.04 0.04-0.01 0.01 0.02 0.02 ***

0.00 -0.01 0.04 -0.04 -0.04 0.04 0.05 0.05 0.05 0.05 0.0] -0.00 0.02 0.02-0.04

We believe that results like this one may argue that structured networks are
integrally hnked to distributed networks in that distributed network learning
techniques may provide a fundamental basis for explaining the cognitive develop-
ment of structured networks. In addition, we see that simple inferential reason-
ing can be produced using purely connectionist models.

CONCLUDING REMARKS

We have attempted to show that a model using an activation spreading variant
can be used to take learned connectionist models and perform some limited forms
of inferencing upon them. Further, we have argued that this technique may pro-
vide a computational model in which structured networks can be learned and
that structured networks provide the inferencing capabilities missing in purely
distributed models. However. before we can truly further this claim. significant
work remains to be done. We must extend and explore such models. particularly
examining whether these types of techniques can be extended to handle the com-
plexity that can be found in real-world problems and serious cognitive models.

In particular we are beginning an examination of two crucial issues: First,
will the technique described above work for realistic problems? In particular, can
the inferencing be designed to impact on the recognition by the distributed net-
work? If so, one could see, for example, a speech recognition program coupled to
a system like Cottrell’s natural language system, providing a handle for a text
understanding system. Similarly such a technique might allow the integration of
top-down and bhottom-up processing for vision and other such signal processing
tasks.
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Secondly. we wish to see if more complex spreading activation models could be
hooked to this type of model. Could networks such as those proposed by Shastri
(1985), Diederich (1985), and Pollack and Waltz (1982) which provide complex
inferencing but require more structure than simply weights between units, be
abstracted out of the learned weights? Two particular areas currently being pur-
sued by the author. for example, focus on active inhibition models for determin-
ing whether portions of the network can be suppressed to provide more complex
inferencing and the learning of structures given temporally ordered information.
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