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ABSTRACT 

We propose an optimality principle for training an unsu­
pervised feedforward neural network based upon maximal 
ability to reconstruct the input data from the network out­
puts. We describe an algorithm which can be used to train 
either linear or nonlinear networks with certain types of 
nonlinearity. Examples of applications to the problems of 
image coding, feature detection, and analysis of random­
dot stereograms are presented. 

1. INTRODUCTION 

There are many algorithms for unsupervised training of neural networks, each of 
which has a particular optimality criterion as its goal. (For a partial review, see 
(Hinton, 1987, Lippmann, 1987).) We have presented a new algorithm for training 
single-layer linear networks which has been shown to have optimality properties 
associated with the Karhunen-Loeve expansion (Sanger, 1988b). We now show 
that a similar algorithm can be applied to certain types of nonlinear feedforward 
networks, and we give some examples of its behavior. 

The optimality principle which we will use to describe the algorithm is based on the 
idea of maximizing information which was first proposed as a desirable property of 
neural networks by Linsker (1986, 1988). Unfortunately, measuring the information 
in network outputs can be difficult without precise knowledge of the distribution 
on the input data, so we seek another measure which is related to information 
but which is easier to compute. If instead of maximizing information, we try to 
maximize our ability to reconstruct the input (with minimum mean-squared error) 
given the output of the network, we are able to obtain some useful results. Note 
that this is not equivalent to maximizing information except in some special cases. 
However, it contains the intuitive notion that the input data is being represented 
by the network in such a way that very little of it has been "lost". 
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2. LINEAR CASE 

We now summarize some of the results in (Sanger, 1988b). A single-layer linear 
feedforward network is described by an M xN matrix C of weights such that if x is 
a vector of N inputs and y is a vector of M outputs with M < N, we have y = Cx. 
As mentioned above, we choose an optimality principle defined so that we can best 
reconstruct the inputs to the network given the outputs. We want to minimize the 
mean squared error E[(x - x)2] where x is the actual input which is zero-mean with 
correlation matrix Q = E[xxT], and x is a linear estimation of this input given the 
output y. The linear least squares estimate (LLSE) is given by 

and we will assume that x is computed in this way for any matrix C of weights 
which we choose. The mean-squared error for the LLSE is given by 

and it is well known that this is minimized if the rows of C are a linear combination of 
the first M eigenvectors of the correlation matrix Q. One optimal choice of C is the 
Singular Value Decomposition (SVD) of Q, for which the output correlation matrix 
E[yyT] = CQCT will be the diagonal matrix of eigenvalues of Q. In this case, the 
outputs are uncorrelated and the sum of their variances (traceE[yyT]) is maximal for 
any set of M un correlated outputs. We can thus think of the eigenvectors as being 
obtained by any process which maximizes the output variance while maintaining 
the outputs uncorrelated. 

We now define the optimal single-layer linear network as that network whose weights 
represent the first M eigenvectors of the input correlation matrix Q. The optimal 
network thus minimizes the mean-squared approximation error E[(x - x)2] given 
the shape constraint that M < N. 

2.1 LINEAR ALGORITHM 

We have previously proposed a weight-update rule called the "Generalized Hebbian 
Algorithm" , and proven that this algorithm causes the rows of the weight matrix C 
to converge to the eigenvectors of the input correlation matrix Q (Sanger, 1988a,b). 
The algorithm is given by: 

C(t + 1) = C(t) + I (y(t)xT(t) - LT[y(t)yT(t)]C(t») (1) 

where I is a rate constant which decreases as l/t, x(t) is an input sample vector, 
yet) = C(t)x(t), and LTD is an operator which makes its matrix argument lower 
triangular by setting all entries above the diagonal to zero. This algorithm can be 
implemented using only a local synaptic learning rule (Sanger, 1988b). 

Since the Generalized Hebbian Algorithm computes the eigenvectors of the input 
correlation matrix Q, it is related to the Singular Value Decomposition (SVD), 
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Figure 1: (aJ original image. (bJ image coded at .36 bits per pixel. (cJ masks 
learned by the network which were used for vector quantized coding of 8x8 blocks of 
the image. 

Principal Components Analysis (PCA), and the Karhunen-Loeve Transform (KLT). 
(For a review of several related algorithms for performing the KLT, see (Oja, 1983).) 

2.2 IMAGE CODING 

We present one example of the behavior of a single-layer linear network. (This 
example appears in (Sanger, 1988b).) Figure 1 a shows an original 256x256x8bit 
image which was used for training a network. 8x8 blocks of the image were chosen 
by scanning over the image, and these were used as training inputs to a network with 
64 inputs and 8 outputs. After training, the set of weights for each output (figure 
lc) represents a vector quantizing mask. Each 8x8 block of the input image is then 
coded using the outputs of the network. Each output is quantized with a number of 
bits related to the log of the variance, and the original figure is approximated from 
the quantized outputs. The reconstruction of figure 1 b uses a total of 23 bits per 8x8 
region, which gives a data rate of 0.36 bits per pixel. The fact that the image could 
be represented using such a low bit rate indicates that the masks that were found 
represent significant features which are useful for recognition. This image coding 
technique is equivalent to block-coded KLT methods common in the literature. 
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3. NONLINEAR CASE 

In general, training a nonlinear unsupervised network to approximate nonlinear 
functions is very difficult. Because of the large (infinite-dimensional) space of pos­
sible functions, it is important to have detailed knowledge of the class of functions 
which are useful in order to design an efficient network algorithm. (Several peo­
ple pointed out to me that the talk implied such knowledge is not necessary, but 
unfortunately such an implication is false.) 

The network structure we consider is a linear layer represented by a matrix C (which 
is perhaps an interior layer of a larger network) followed by node nonlinearities (1'(Yi) 
where Yi is the ith linear output, followed by another linear layer (perhaps followed 
by more layers). We assume that the nonlinearities (1'0 are fixed, and that the only 
parameters susceptible to training are the linear weights C. 

If z is the M-vector of outputs after the nonlinearity, then we can write each com­
ponent Zi = (1'(Yi) = (1'(CiX) where Ci is the ith row of the matrix C. Note that 
the level contours of each function Zi are determined entirely by the vector Ci, and 
that the effect of (1'0 is limited to modifying the output value. Intuitively, we thus 
expect that if Yi encodes a useful parameter of the input x, then Zi will encode the 
same parameter, although scaled by the nonlinearity (1'0. 

This can be formalized, and if we choose our optimality principle to again be min­
imum mean-squared linear approximation of the original input x given the output 
z, the best solution remains when the rows of C are a linear combination of the first 
M eigenvectors of the input correlation matrix Q (Bourlard and Kamp, 1988) . 

In two of the simulations, the nonlinearity (1'0 which we use is a rectification non­
linearity, given by 

{ Yi 
(1'(Yd = 0 

if Yi 20 
if Yi <0 

Note that at most one of {(1'(Yi), (1'( -Yi)} is nonzero at any time, so these two values 
are uncorrelated. Therefore, if we maximize the variance of y (before the nonlin­
earity) while maintaining the elements of Z (after the nonlinearity) uncorrelated, 
we need 2M outputs in order to represent the data available from an M-vector y. 
Note that 2M may be greater than the number of inputs N, so that the "hidden 
layer" Z can have more elements than the input. 

3.1 NONLINEAR ALGORITHM 

The nonlinear Generalized Hebbian Algorithm has exactly the same form as for 
the linear case, except that we substitute the use of the output values after the 
nonlinearity for the linear values. The algorithm is thus given by: 

C(t + 1) = C(t) + 'Y (z(t)xT(t) - LT[z(t)zT(t)]C(t)) (2) 

where the elements of z are given by Zi(t) = (1'(Yi(t)), with y(t) = C(t)x(t). 

Although we have not proven that this algorithm converges, a heuristic analysis 
of its behavior (for a rectification nonlinearity and Gaussian input distribution) 
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shows that stable points may exist for which each row of C is proportional to 
an eigenvector of Q, and pairs of rows are either the negative of each other or 
orthogonal. In practice, the rows of C are ordered by decreasing output variance, 
and occur in pairs for which one member is the negative of the other. This choice 
of C will maximize the sum of the output variances for uncorrelated outputs, so 
long as the input is Gaussian. It also allows optimal linear estimation of the input 
given the output, so long as both polarities of each of the eigenvectors are present. 

3.2 NONLINEAR EXAMPLES 

3.2.1 Encoder Problem 

We compare the performance of two nonlinear networks which have learned to 
perform an identity mapping (the "encoder" problem). One is trained by back­
propagation, (Rumelhart et a/., 1986) and the other has two hidden layers trained 
using the unsupervised Hebbian algorithm, while the output layer is trained using 
a supervised LMS algorithm (Widrow and Hoff, 1960). The network has 5 inputs, 
two hidden layers of 3 units each, and 5 outputs. There is a sigmoid nonlinearity at 
each hidden layer, but the thresholds are all kept at zero. The task is to minimize 
the mean-squared difference between the inputs and the outputs. The input is a 
zero-mean correlated Gaussian random 5-vector, and both algorithms are presented 
with the same sequence of inputs. The unsupervised-trained network converged to a 
steady state after 1600 examples, and the backpropagation network converged after 
2400 (convergence determined by no further decrease in average error). The RMS 
error at steady state was 0.42 for both algorithms (this figure should be compared to 
the sum of the variances of the inputs, which was 5.0). Therefore, for this particular 
task, there is no significant difference in performance between backpropagation and 
the Generalized Hebbian Algorithm. This is an encouraging result, since if we can 
use an unsupervised algorithm to solve other problems, the training time will scale 
at most linearly with the number of layers. 

3.2.2 Nonlinear Receptive Fields 

Several investigators have shown that Hebbian algorithms can discover useful image 
features related to the receptive fields of cells in primate visual cortex (see for 
example (Bienenstock et a/., 1982, Linsker, 1986, Barrow, 1987». One of the more 
recent methods uses an algorithm very similar to the one proposed here to find the 
principal component of the input (Linsker, 1986). We performed an experiment to 
find out what types of nonlinear receptive fields could be learned by the Generalized 
Hebbian Algorithm if provided with similar input to that used by Linsker. 

We used a single-layer nonlinear network with 4096 inputs arranged in a 64x64 
grid, and 16 outputs with a rectification nonlinearity. The input data consisted of 
images of low-pass filtered white Gaussian noise multiplied by a Gaussian window. 
After 5000 samples, the 16 outputs learned the masks shown in figure 2. These 
masks possess qualitative similarity to the receptive fields of cells found in the visual 
cortex of cat and monkey (see for example (Andrews and Pollen, 1979». They are 
equivalent to the masks learned by a purely linear network (Sanger, 1988b), except 
that both positive and negative polarities of most mask shapes are present here. 
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Figure 2: Nonlinear receptive fields ordered from left-to-right and top-to-bottom. 

3.2.3 Stereo 

We now show how the nonlinear Generalized Hebbian Algorithm can be used to 
train a two-layer network to detect disparity edges. The network has 128 inputs, 
8 types of unit in the hidden layer with a rectification nonlinearity, and 4 types of 
output unit. A 128x128 pixel random-dot stereo pair was generated in which the 
left half had a disparity of two pixels, and the right half had zero disparity. The 
image was convolved with a vertically-oriented elliptical Gaussian mask to remove 
high-frequency vertical components. Corresponding 8x8 blocks of the left and right 
images (64 pixels from each image) were multiplied by a Gaussian window function 
and presented as input to the network, which was allowed to learn the first layer 
according to the unsupervised algorithm. After 4000 iterations, the first layer had 
converged to a set of 8 pairs of masks. These masks were convolved with the images 
(the left mask was convolved with the left image, and the right mask with the right 
image, and the two results were summed and rectified) to produce a pattern of 
activity at the hidden layer. (Although there were only 8 types of hidden unit, we 
now allow one of each type to be centered at every input image location to obtain a 
pattern of total activity.) Figure 3 shows this activity, and we can see that the last 
four masks are disparity-sensitive since they respond preferentially to either the 2 
pixel disparity or the zero disparity region of the image. 
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Figure 3: Hidden layer response for a two-layer nonlinear network trained on stereo 
images. The left half of the input random dot image has a 2 pixel disparity, and the 
right half has zero disparity. 

Figure 4: Output layer response for a two-layer nonlinear network trained on stereo 
Images. 

Since we were interested in disparity, we trained the second layer using only the last 
four hidden unit types. The second layer had 1024 (=4x16x16) inputs organized as 
a 16x16 receptive field in each of the four hidden unit "planes". The outputs did not 
have any nonlinearity. Training was performed by scanning over the hidden unit 
activity pattern (successive examples overlapped by 8 pixels) and 6000 iterations 
were used to produce the second-layer weights. The masks that were learned were 
then convolved with the hidden unit activity pattern to produce an output unit 
activity pattern, shown in figure 4. 

The third output is clearly sensitive to a change in disparity (a depth edge). If we 
generate several different random-dot stereograms and average the output results, 
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Figure 5: Output layer response averaged over ten stereograms with a central 2 pixel 
disparity square and zero disparity surround. 

we see that the other outputs are also sensitive (on average) to disparity changes, but 
not as much as the third. Figure 5 shows the averaged response to 10 stereograms 
with a central 2 pixel disparity square against a zero disparity background. Note 
that the ability to detect disparity edges requires the rectification nonlinearity at 
the hidden layer, since no linear function has this property. 

4. CONCLUSION 

We have shown that the unsupervised Generalized Hebbian Algorithm can produce 
useful networks. The algorithm has been proven to converge only for single-layer 
linear networks. However, when applied to nonlinear networks with certain types 
of nonlinearity, it appears to converge to good results. In certain cases, it operates 
by maintaining the outputs uncorrelated while maximizing their variance. We have 
not investigated its behavior on nonlinearities other than rectification or sigmoids, 
so we can make no predictions about its general utility. Nevertheless, the few 
examples presented for the nonlinear case are encouraging, and suggest that further 
investigation of this algorithm will yield interesting results. 
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